Quantensysteme können sich selbst korrigieren

Quantentheoretikerin Christine Muschik IQOQI Innsbruck/M.R.Knabl

Ein internationales Forscherteam aus Innsbruck, Harvard, Kopenhagen und Waterloo hat in der Fachzeitschrift Nature Communications eine neue Methode vorgestellt, mit der Quanteninformation in gefangenen Ionen geschützt werden kann. In Ionenfallen gespeicherten Teilchen gelten als zukunftsträchtige Technologie für den Bau eines Quantencomputers.

In ihrem neuen Vorschlag verwenden die Forscherinnen und Forscher Dissipation, d.h. die Wechselwirkung eines Quantensystems mit seiner Umgebung, um Quantenzustände zu korrigieren. Dissipation wird normalerweise möglichst vermieden, kann aber, wie in der aktuellen Arbeit gezeigt wird, auch ausgenutzt werden.

Standardmäßige Quantenfehlerkorrekturen werden durch die Anwendung einer Sequenz von Gattern in einem logischen Quantenschaltkreis durchgeführt. Dabei sind Messungen mit klassischen Messgeräten notwendig. Das nun vorgestellte neue dissipative Schema kommt ohne logischen Schaltkreis aus und erfordert auch keine Messungen.

„Der gesamte Prozess der Fehlerkorrektur erfolgt autonom auf mikroskopischer Ebene, so dass Quantensysteme sich selbst korrigieren können“, erklärt Co-Autorin Christine Muschik vom Institut für Theoretische Physik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften.

Der neue Ansatz hat wichtige praktische Anwendungen bei hochpräzisen Messungen. „Wir zeigen in der Arbeit, wie der neue dissipative Korrekturmechanismus genutzt werden kann, um die Genauigkeit bei der Erfassung schwacher Magnetfelder zu erhöhen“, erzählt Christine Muschik.

Diese Ergebnisse eröffnen neue Möglichkeiten zur Verbesserung hochpräziser Messverfahren mit gefangenen Ionen und stellen einen Meilenstein auf dem Weg zu einer selbstkorrigierenden Quanteninformationsverarbeitung dar.

Publikation: Dissipative Quantum Error Correction and Application to Quantum Sensing with Trapped Ions. F. Reiter, A. Sørensen, P. Zoller, and C. Muschik. Nature Communications 2017 DOI: 10.1038/s41467-017-01895-5

Rückfragehinweis:
Christine Muschik
Institut für Theoretische Physik
Universität Innsbruck
Telefon: +43 512 507-52263
E-Mail: christine.muschik@uibk.ac.at

Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507-32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

http://dx.doi.org/10.1038/s41467-017-01895-5 – Dissipative Quantum Error Correction and Application to Quantum Sensing with Trapped Ions. F. Reiter, A. Sørensen, P. Zoller, and C. Muschik. Nature Communications 2017
http://www.uibk.ac.at/th-physik/qo/ – Forschungsgruppe „Quantenoptik und Quanteninformation“

Media Contact

Dr. Christian Flatz Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer