Quanten-Sensoren zur hochpräzisen Magnetfeldmessung an Supraleitern

Die Gruppe von Georg-H. Endress-Professor Patrick Maletinsky erforscht bereits seit einigen Jahren sogenannte Stickstoff-Vakanzzentren (NV-Zentren) in Diamanten, um diese als hochpräzise Sensoren einzusetzen.

Die NV-Zentren sind natürliche Defekte im Kristallgitter von Diamanten. Die darin enthaltenen Elektronen lassen sich anregen und manipulieren und reagieren empfindlich auf elektrische und magnetische Felder in ihrer Umgebung. Dabei ist es der Eigendrehimpuls (Spin) der Elektronen, der sich in Abhängigkeit der Umgebung verändert und mithilfe verschiedener Messmethoden erfassen lässt.

Maletinsky und seinem Team ist es gelungen, einzelne dieser NV-Spins an Spitzen von Rasterkraftmikroskopen zu platzieren, um damit auf der Nanoskala Magnetfelder abzubilden. Bislang wurden solche Analysen bei Raumtemperatur durchgeführt.

Zahlreiche Einsatzgebiete verlangen jedoch Untersuchungstemperaturen nahe des absoluten Nullpunkts. So entfalten beispielsweise supraleitende Materialien ihre besonderen Eigenschaften erst bei sehr tiefen Temperaturen um -200°C. Sie leiten dann elektrischen Strom ohne Verluste und können mit der Ausbildung von sogenannten Vortices exotische magnetische Eigenschaften entwickeln.

Erstmals bei Temperaturen nahe des absoluten Nullpunktes

In der vorliegenden Arbeit haben die Wissenschaftler nun erstmals das neuartige Mikroskop unter kryogenen Bedingungen bei Temperaturen von etwa 4 Kelvin (-269,15 °C) erfolgreich eingesetzt. Sie konnten magnetische Streufelder von Vortices in einem Hochtemperatur-Supraleiter mit einer bislang unerreichten Genauigkeit darstellen.

Die resultierende örtliche Auflösung von 10 Nanometern ist um ein bis zwei Grössenordnungen besser als bei alternativen Methoden. Dies erlaubt erstmals eine genaue quantitative Analyse, beispielsweise eine eindeutige Bestimmung der magnetischen Eindringtiefe der supraleitenden Probe – eine der fundamentalen Grössen, die einen Supraleiter charakterisieren.

«Unsere Resultate sind nicht nur für die Quantensensorik und die Supraleitung von Relevanz», kommentiert Patrick Maletinsky die Arbeit. «Auf lange Sicht werden sie auch Einfluss auf die Festkörperphysik nehmen und mit einer weiteren Verbesserung der Sensitivität können sogar Anwendungen in der Biologie in den Fokus rücken.»

Originalbeitrag
L. Thiel, D. Rohner, M. Ganzhorn, P. Appel, E. Neu, B. Müller, R. Kleiner, D. Koelle and P. Maletinsky
Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer
Nature Nanotechnology (2016), doi: 10.1038/nnano.2016.63

Weitere Auskünfte
Prof. Patrick Maletinsky, Universität Basel, Departement Physik, Tel. +41 61 267 37 63, E-Mail: patrick.maletinsky@unibas.ch

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Quantensensoren-zur-hochpraezisen-Magnetfeldmessung-an-Supraleitern.html

Media Contact

Reto Caluori Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer