Spezialfasern für stärkere Hochleistungsfaserlaser

Mit dieser Materialinnovation können Hochleistungsfaserlaser gebaut werden, die aus nur einer einzigen Glasfaser mehr als fünf Kilowatt Laserleistung erzeugen. In einem Folgeprojekt wollen die Jenaer Wissenschaftler gemeinsam mit ihren Partnern das Herstellungsverfahren weiter optimieren. Damit soll die Ausgangslage geschaffen werden, um neue, verbesserte Lichtquellen zu entwickeln.

Für die Herstellung des neuen Glasfasermaterials wird in mehreren Prozessschritten ein hochreines synthetisches Quarzglas-Granulat hergestellt, das zu Stäben und später zu Glasfasern weiterverarbeitet wird. Das REPUSIL genannte Verfahren wurde im Rahmen eines vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Verbundprojektes entwickelt und erhielt zahlreiche Auszeichnungen. Die wissenschaftliche Leistung bestand darin, dass es gelang den Faserkerndurchmesser zu erweitern, um dadurch die Laserleistung besser zu verteilen und das System insgesamt stabiler zu machen.

„Anstatt der bislang sehr aufwendigen und kostenintensiven Koppelung mehrere Einzelfasern, reicht nun eine einzige Glasfaser für die Erzeugung der hohen Laserleistung. Weitere Vorteile des neuen Verfahrens liegen in der Robustheit und den niedrigen Herstellungskosten der Glasfasern,“ fasst Dr. Kay Schuster, Leiter der Arbeitsgruppe Fasertechnologie, die Ergebnisse zusammen. In dem kürzlich gestarteten Folgeprojekt soll das REPUSIL-Verfahren weiterentwickelt werden, um so die Leistungsfähigkeit der Faserlaser zu steigern.

Die aus den IPHT-Fasern entwickelten Multikilowatt-Faserlaser könnten unter anderem im Karosseriebau der Automobilindustrie zur Anwendung kommen, um mehrere Millimeter dicke Metallbleche zu schneiden, zu schweißen oder zu bohren. Erste Prototypen-Tests bei den Projektpartnern VW und Audi waren erfolgreich.

Die Verfügbarkeit der neuen Gläser sorgte für internationale Aufmerksamkeit und war Anlass für neue wissenschaftliche Kooperationen des IPHT unter anderem mit der Universität Limoges in Frankreich, dem College of Optics & Photonics in Orlando, USA sowie der Universität Adelaide in Australien.

Der Wissenschaftliche Direktor des IPHT, Prof. Jürgen Popp, wertet die Fasertechnologie als eine der Kernkompetenzen des Jenaer Leibniz-Institutes. „Die Tatsache, dass es uns möglich ist Grundlagenforschung auf dem Gebiet der Faseroptik zu betreiben und neue Technologien für die Herstellung von Glasfasern zu erforschen, versetzt uns in die Lage, Spezialfasern für vielfältige Anwendungen, zum Beispiel in der Biophotonik, zu entwickeln,“ resümiert Popp.

Faserlaser
Faserlaser sind eine spezielle Form des Festkörperlasers, die im Kern eine Glasfaser enthalten. Während der Festkörperlaser eine Pumplichtquelle benötigt, ist bei einem Faserlaser das Licht in die Glasfaser eingekoppelt. Das neue Herstellungsverfahren, genannt REPUSIL, wurde in Kooperation mit dem Technologiekonzern Heraeus Quarzglas entwickelt und mit dem Thüringer Forschungspreis und dem Heraeus Innovationspreis ausgezeichnet.
Leibniz-Institut für Photonische Technologien
Das Leibniz-Institut für Photonische Technologien e.V. erforscht die wissenschaftlichen Grundlagen für photonische Verfahren und Systeme höchster Sensitivität, Effizienz und Auflösung. Gemäß dem Motto „Photonics for Life“ entwickeln Wissenschaftler daraus maßgeschneiderte Lösungen für Fragestellungen aus den Bereichen Lebens- und Umweltwissenschaften sowie Medizin.

Media Contact

Dr. Andreas Wolff IPHT Jena

Weitere Informationen:

http://www.ipht-jena.de

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer