Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrostrukturen mit dem Laser ätzen

25.10.2016

Mit dem Ultrakurzpulslaser lassen sich nicht nur feine Strukturen schneiden, in einem Verbundprojekt haben Wissenschaftler untersucht, wie man damit auch Mikrostrukturen in Dünnglas erzeugen kann. Anwendungen gibt es im Analytikbereich (lab-on-a-chip), aber auch in der Elektronikbranche und im Consumer-Bereich gibt es großes Interesse.

Am Anfang dieser neuen Methode stand ein überraschender Effekt: Wenn Glas mit dem Ultrakurzpulslaser in der richtigen Weise bestrahlt wird, wird es so modifiziert, dass es deutlich empfindlicher für ein anschließendes nasschemisches Ätzverfahren wird. Und zwar hundert- bis tausendfach.


Strukturierungsprozess von Glas durch direkte Laserablation bei der Verwendung von ultrakurzen Laserpulsen.

Fraunhofer ILT, Aachen / Volker Lannert.


Mit dem SLE-Verfahren wurden Löcher in Dünnglas hergestellt, die besonders glatte Kanten aufweisen.

Fraunhofer ILT, Aachen.

Man kann also einen Laserfokus von wenigen Mikrometern Durchmesser durch einen Glasblock führen und anschließend auf seiner Spur eine feine Röhre durch das Volumen ätzen. So lassen sich kleinste Löcher erzeugen, komplette Mikrofluidik-Systeme in das Volumen schreiben oder auch Schnitte mit hoher Kantenqualität herstellen.

Ergebnisse im Forschungsprojekt Femto Digital Photonic Production

Bevor dieser Effekt für industrielle Verfahren genutzt werden kann, müssen eine Reihe von Fragen beantwortet werden: Was sind die Wechselwirkungsprozesse? Bei welchen Materialien funktioniert das? Was sind die optimalen Prozessparameter? Welche Prozesstechnik ist nötig?

Die Beantwortung dieser Fragen ist ein Ziel des BMBF-geförderten Verbundprojektes »Femto Digital Photonic Production«. Seit 2014 arbeiten in dem Projekt Partner von drei Lehrstühlen der RWTH Aachen University, dem Fraunhofer-Institut für Lasertechnik ILT und sechs Firmen an der Erforschung neuartiger Effekte bei der Bearbeitung von transparenten Materialien mit ultrakurzen Laserpulsen.

Inzwischen wurde ein Demonstrator entwickelt, an dem sich verschiedene Materialien und Prozessparameter vergleichen lassen. Das selektive Laser-Ätzen (englisch Selective Laser Etching SLE) wurde für mehrere Glasmaterialien untersucht, so zum Beispiel für Quarzglas, Saphir, Borofloat 33 und Corning Willow. In Borofloat 33 wurden Ätz-Selektivitäten zwischen laserstrukturierten und unstrukturierten Bereichen von etwa 1000:1 erreicht, in Willow-Gläsern etwa 100:1.

Nächstes Ziel: Prozessverständnis verbessern

In der nächsten Phase des Projektes bis 2019 soll das Prozessverständnis verbessert werden. Dafür werden am Lehrstuhl für Lasertechnik LLT der RWTH Aachen verschiedene Experimente durchgeführt, parallel laufen am Lehr-/Forschungsgebiet für Nichtlineare Dynamik der Laser-Fertigungsverfahren NLD komplexe Simulationen. Der Lehrstuhl für Technologie Optischer Systeme TOS konzentriert sich auf die Optimierung der Optik in den Systemen.

Bei der Entwicklung der Prozesstechnik arbeiten die Wissenschaftler mit drei Herstellern von Laserstrahlquellen (Amphos, Edgewave, Trumpf) sowie drei Systemanbietern (4Jet, LightFab, Pulsar Photonics) zusammen. Gemeinsam wollen sie sowohl Multistrahlsysteme für großflächige Anwendungen als auch kleinere Systeme für die Mikrobearbeitung entwickeln.

Die Firma LightFab GmbH, ein Start-up von ehemaligen Mitarbeitern des Lehrstuhls für Lasertechnik der RWTH Aachen, nutzt das selektive laserinduzierte Ätzen zur Fertigung von 3D-Präzisionsteilen aus Quarzglas. Die Maschine dafür, der LightFab 3D Printer, wurde auf der Photonics West 2016 mit dem Prism Award geehrt. Sie steigert die Produktivität des subtraktiven 3D-Drucks von Glasbauteilen für Prototypen und Serien und mit den Hochgeschwindigkeitsmodulen ermöglicht sie sogar die Massenproduktion mit dem SLE-Verfahren.

Anwendungspotential von Biomedizin bis Elektronik

Schon heute sehen die Projektpartner eine Vielzahl von möglichen Anwendungen. Für die Mikrofluidik lassen sich nicht nur Kanäle im Volumen erzeugen sondern auch Düsen und andere Mikrobauteile.

Große Vorteile bietet das Verfahren auch für Bohr- und Schneidprozesse. Das Ätzen erlaubt dabei einen spannungsfreien Materialabtrag. Das bietet Vorteile zum Beispiel für die Herstellung von Interposer-Strukturen in der Halbleitertechnik. Dabei sind Strukturen unter 10 µm möglich. Neue Systeme mit hoher Laserleistung und Multistrahl-Optiken bieten ein erhebliches Potential, auch dabei einen hohen Durchsatz zu erreichen.

Ansprechpartner

M.Sc. Christian Kalupka
Projektkoordinator »Femto Digital Photonic Production«
Telefon +49 241 8906-276
christian.kalupka@llt.rwth-aachen.de

Dipl.-Phys. Sebastian Nippgen
Gruppenleiter 3D-Volumenstrukturierung
Telefon +49 241 8906-470
sebastian.nippgen@llt.rwth-aachen.de

LLT - Lehrstuhl für Lasertechnik
RWTH Aachen University

Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen

Weitere Informationen:

http://www.llt.rwth-aachen.de
http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Elektrosynthese von Alkoholen energieeffizienter gestalten
18.10.2019 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht TUM Agenda 2030: Kräfte bündeln zur Additiven Fertigung: TUM erforscht digitale Fertigungstechnologie der Zukunft
09.10.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics