Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserverfahren für funktionsintegrierte Composites

18.02.2019

Composites vereinen gewinnbringend die Vorteile artungleicher Materialien – und schöpfen damit zum Beispiel Potentiale im Leichtbau aus. Auf der JEC World 2019 im März in Paris präsentieren die Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein breites Spektrum an laserbasierten Technologien für die effiziente Herstellung und Bearbeitung von Verbundmaterialien. Einblicke zu Füge- und Trennverfahren sowie zur Oberflächenstrukturierung erhalten Besucher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL, Halle 5A/D17.

Experten des Fraunhofer ILT erforschen und entwickeln Laserprozesse für das wirtschaftliche Fügen, Schneiden, Abtragen oder Bohren von Verbundmaterialien – insbesondere vor dem Hintergrund der Integration in bestehende Prozessketten.


Besäumen eines PKW-Dachspriegels aus glas- und carbonfaserverstärktem Kunststoff.

Fraunhofer ILT, Aachen


Mikrostrukturierter Hybridträger aus Magnesium und kurzglasfaserverstärktem Kunststoff (PP-GF30).

Fraunhofer ILT, Aachen

Dr. Alexander Olowinsky, Gruppenleiter Mikrofügen am Fraunhofer ILT: »Mechanische Verfahren in der Trenntechnik wie das Fräsen, Sägen oder das Wasserstrahlschneiden sowie das Kleben beim Fügen von Werkstoffen lassen sich durch Laserprozesse ersetzen, wobei diese die Effizienz und Qualität der Verfahren deutlich steigern können.«

Mikrostrukturierung von Magnesium für Ultraleichtanwendungen

Kunststoffe und Metalle bieten jeweils spezielle Eigenschaften, etwa bei Formbarkeit, Festigkeit oder Wärmeleitfähigkeit, die durch die Herstellung von Hybridbauteilen kombiniert werden können. Bei Hybridverbindungen müssen die Metalloberflächen zunächst vorbereitet werden. Dabei kommen z. B. die Mikrostrukturierung per cw-Laser oder die Mikro- beziehungsweise Nanostrukturierung mit Ultrakurzpulslaser mit unterschiedlichen Maschinenkonzepten infrage.

Magnesium ist der leichteste metallische Konstruktionswerkstoff und zeichnet sich durch eine besonders hohe Wärmeleitfähigkeit aus. Gemeinsam mit dem Institut für Kunststoffverarbeitung IKV der RWTH Aachen entwickelt das Fraunhofer ILT Laserprozesse zur Mikrostrukturierung von Magnesium, das anschließend sehr stabile und formschlüssige Verbindungen mit verschiedenen thermoplastischen Kunststoffen ermöglicht.

Ein single-mode Faserlaser (mit 1064 nm Wellenlänge) bringt mit Flächenraten von bis zu 1000 mm2 pro Sekunde präzise Hinterschnitte in die Magnesiumoberfläche ein, die sich im späteren Spritzgussverfahren mit Kunststoff ausfüllen lassen. »Mit kurzglasfaserverstärktem Kunststoff haben wir Hybridverbindungen mit hohen Zugscherfestigkeiten bis zu 22,4 MPa realisiert – die Bauteile sind extrem leicht und gleichzeitig hochbelastbar«, erklärt Dipl.-Wirt.-Ing. Christoph Engelmann, Teamleiter Kunststoffbearbeitung am Fraunhofer ILT. Da keine Klebstoffe nötig sind, finden Alterungsprozesse zudem langsamer statt als bei konventionellen geklebten Verbindungen.

Bei der Kunststoffauswahl gibt es viel Spielraum: Grundsätzlich eignen sich alle thermoplastischen Kunststoffe, die im Spritzgussverfahren einsetzbar sind. Sie eröffnen vielfältige Möglichkeiten zur Bauteilanbindung und zur Integration von Funktionalitäten, welche die hergestellten Hybridbauteile später bieten und welche in reiner Metallbauweise nicht erzeugt werden können.

Materialschonende Trennverfahren für Composites

Beim Laserstrahlschneiden von Faserverbundmaterialien, insbesondere carbonfaserverstärkten Kunststoffen, zielt die Prozessauslegung auf eine möglichst kleine Wärmeeinflusszone. Gleichzeitig soll eine produktivitätsorientierte, kurze Bearbeitungszeit eingehalten werden. Durch wiederholtes, schnelles Scannen des Laserstrahls entlang der Schneidbahn entsteht ein sukzessiver, schonender Abtrag.

»Durch ein kontinuierliches Nachführen des Scanfeldes ist dieses Verfahren auch für große Bauteile anwendbar«, erläutert Dr. Frank Schneider, Projektleiter Makrofügen und Schneiden am Fraunhofer ILT.

Laserleistung, Scangeschwindigkeit und die Abkühlzeit zwischen den Scans beeinflussen dabei die Wärmeeinflusszone und die Bearbeitungszeit. Die Wissenschaftler optimieren diese Parameter und ermitteln so die materialabhängig besten Einstellungen, die bei hybriden, aus einem Materialmix bestehenden Teilen auch innerhalb eines Bauteils adaptiert werden können.

Selbst wenn so unterschiedliche Werkstoffe wie glasfaser- und kohlefaserverstärkte Kunststoffe getrennt werden sollen, die in übereinanderliegenden Schichten angeordnet sind, lässt sich ein Schnitt in nur einem Bearbeitungsschritt ausführen – präzise, ohne Verschleiß an Werkzeugen und dank der Verfügbarkeit von cw-Hochleistungslasern mit hoher Strahlqualität auch effizient.

Laserbohren für produktive CFK-Bauteilfertigung

Im Leichtbaubereich wird die Integration von Funktionselementen in CFK-Strukturbauteilen häufig über eingesetzte Gewindehülsen (Inserts) durchgeführt, z. B. in Preforms für Bauteile in der Automobil- und Flugzeugindustrie. Die Inserts werden dazu formschlüssig in typischerweise mechanisch gebohrte Bauteile eingesetzt und anschließen geklebt. Die Qualität und Festigkeit der Fügestelle hängen dabei maßgeblich von der Fehlerfreiheit des gebohrten Laminates und der Klebung ab.

Besonders haltbare und hochqualitative Verbindungen entstehen, wenn das noch ungetränkte Carbonfasertextil mittels ultrakurz gepulster (UKP) Laserstrahlung gebohrt wird, in das anschließend Funktionselemente formschlüssig eingesetzt werden.

Laserscanner ermöglichen auch anspruchsvolle Bohrkonturen wie sternförmige Formbohrungen und damit die Integration von belastungsangepassten Einlegeteilen. Im späteren Infusionsprozess dient die Matrix als Klebstoff zwischen den Carbonfasern und dem Insert, wodurch kein weiterer Klebstoff erforderlich ist.

Durch UKP-Laserstrahlbearbeitung können sowohl Preforms als auch konsolidierte CFK-Bauteile hochqualitativ gebohrt werden. »Durch die primäre Verdampfung des Werkstoffs können thermische oder materialographische Schädigungen im Laminat oder an den Fasern vermieden werden«, erläutert Dr. Stefan Janssen, Teamleiter Laserstrahlbohren und Präzisionstrennen am Fraunhofer ILT. Die Prozesszeiten von typischerweise wenigen Sekunden bis zu einer Minute und die hohe Automatisierbarkeit unterstützen zudem einen produktiven Einsatz in der CFK-Bauteilfertigung.

Das Fraunhofer ILT auf der JEC World 2019

Mehr zur Laserbearbeitung von Composites erfahren Besucher auf der JEC World vom 12. bis zum 14. März 2019 in Paris. Experten des Fraunhofer ILT präsentieren Details und neue Entwicklungen auf dem AZL-Gemeinschaftsstand, Halle 5A/D17.

Wissenschaftliche Ansprechpartner:

Dipl.-Wirt.-Ing. Christoph Engelmann
Gruppe Mikrofügen
Telefon +49 241 8906-217
christoph.engelmann@ilt.fraunhofer.de

Dr.-Ing. Frank Schneider
Gruppe Makrofügen und Schneiden
Telefon +49 241 8906-426
frank.schneider@ilt.fraunhofer.de

Dr.-Ing. Stefan Janssen
Gruppe Mikro- und Nanostrukturierung
Telefon +49 241 8906-8076
stefan.janssen@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de
http://www.ilt.fraunhofer.de/de/messen-und-veranstaltungen/messen/jec-world-comp...

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Materialdesign in 3D: vom Molekül bis zur Makrostruktur
21.02.2019 | Karlsruher Institut für Technologie

nachricht 3D-Druck in Echtzeit überwachen
11.02.2019 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Im Focus: Wichtiger Mechanismus der Antigenpräsentation in Wächterzellen des Immunsystems enträtselt

TWINCORE-Forscher entschlüsseln, wie der Transport von Antigenfragmenten auf die Oberfläche von Immunzellen des Menschen reguliert wird

Dendritische Zellen sind die Wächter unserer Immunabwehr. Sie lauern fremden Eindringlingen auf, schlucken sie, zerlegen sie in Bruchstücke und präsentieren...

Im Focus: Selbstheilender Lack aus Maisstärke lässt kleine Kratzer durch Wärme verschwinden

Ein neuer Lack aus Maisstärke ist wegen der besonderen Anordnung seiner Moleküle in der Lage, durch Wärme kleine Kratzer von selbst zu reparieren: Die Vernetzung über ringförmige Moleküle macht das Material beweglich, sodass es die Kratzer ausgleicht und diese wieder verschwinden.

Oberflächliche Mikrokratzer in der Autokarosserie oder auf anderen Hochglanzoberflächen sind harmlos, aber ärgerlich. Gerade im Luxussegment zeichnen sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magnetische Mikroboote

21.03.2019 | Physik Astronomie

Protein BRCA1 als Stress-Coach

21.03.2019 | Biowissenschaften Chemie

Möglicher Ur-Stoffwechsel in Bakterien entdeckt

21.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics