Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klebeverfahren für Schindeltechnologie entwickelt

09.01.2019

Das Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg hat ein Klebeverfahren zur Verschaltung von Silicium-Solarzellen für die industrielle Produktion von Schindelmodulen entwickelt. Die hohe Effizienz von Modulen mit Schindelzellen und ihr ästhetisches Erscheinungsbild lassen die Nachfrage auf dem Markt aktuell stark ansteigen. Der industrielle Zell-Stringer am Fraunhofer ISE ist deutschlandweit einzigartig und bietet verschiedenste Möglichkeiten für die Prototypenfertigung der hocheffizienten Module.

Schindelzellen lassen sich aufgrund von mechanischen Spannungen nicht konventionell verlöten. Erst durch die Klebetechnologie können zuverlässige und robuste Schindelstrings hergestellt werden.


Elektrisch leitfähiges Kleben von geschindelten Zellen am industriellen Stringer im Module-TEC des Fraunhofer ISE.

Fraunhofer ISE

Der Klebstoff kann die thermische Ausdehnung des Modulglases bei wechselnden Umgebungstemperaturen ausgleichen und ist außerdem bleifrei. Der Stringer der Firma teamtechnik Maschinen und Anlagen GmbH appliziert den elektrisch leitfähigen Klebstoff im Siebdruckverfahren und verschaltet die Zellstreifen mit hoher Präzision.

Achim Kraft, Teamleiter Verbindungstechnologie am Fraunhofer ISE, ist zuversichtlich: »Ästhetik und die hohe Leistungsdichte werden die Schindeltechnologie vor allem in der Automobilbranche und der Gebäudeintegration vorantreiben. Europäische Modulhersteller fragen vermehrt nach anwendungsspezifischen Entwicklungen und Technologiebewertungen für geschindelte Solarzellen.«

Die Schindeltechnik wurde bereits in den 60er Jahren erfunden. Doch erst die stark gesunkenen Kosten für Silicium-Zellen und die erfolgreiche Entwicklung leitfähiger Klebstoffe verhelfen der Schindeltechnologie nun zur industriellen Marktreife.

Durch das Schindeln werden Zell-Zwischenräume vermieden, so dass sich die Modulfläche maximal für die Energieerzeugung nutzen lässt und ein homogenes, ästhetisches Gesamtbild entsteht. Im Vergleich zu herkömmlichen Solarmodulen ergibt sich die höhere Moduleffizienz zum einen durch die größere aktive Modulfläche, zum anderen entstehen keine Verschattungsverluste durch aufliegende Zellverbinder.

Auch die Widerstandsverluste sind durch niedrigere Stromstärken in den Zellstreifen geringer. Diese Zelle-zu-Modul-Verluste und -Gewinne lassen sich mit dem Softwaretool SmartCalc.CTM des Fraunhofer ISE genau analysieren.

Im Endergebnis weisen die hocheffizienten Module im Vergleich zu konventionellen Solarmodulen bei gleicher Zelleffizienz eine bis ca. 2 Prozent (absolut) höhere Moduleffizienz auf, was auch Leistungsmessungen des Kalibrierlabors CalLab PV Modules am Fraunhofer ISE bestätigten.

Mit den schmalen Zellstreifen können verschiedene Modulformate realisiert werden, das schafft viel Spielraum für spezifische Anwendungen. Derzeit arbeiten die Experten am Fraunhofer ISE an der Optimierung der Klebstoffmenge und des Zelldesigns sowie an der Erschließung neuer Anwendungsfelder.

Die Entwicklungsarbeiten im Rahmen des Projekts »PV-BAT400« wurden durch das Bundesministerium für Wirtschaft und Energie (FKZ 0324125) gefördert.

Weitere Informationen:

https://www.ise.fraunhofer.de/de/presse-und-medien/presseinformationen/2019/kleb...

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues Quantenpunkt-Mikroskop zeigt die elektrischen Potenziale einzelner Atome
11.06.2019 | Forschungszentrum Jülich GmbH

nachricht Wasserdicht dank flinker Laser
27.05.2019 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics