Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hohlräume in 3D

29.03.2019

Freiburger Forschenden gelingt es, Kanalstrukturen in Glas zu drucken

Quarzglas ist das bevorzugte Material für Anwendungen, die eine langfristige Nutzung erfordern, da es hohe chemische und mechanische Stabilität sowie hervorragende optische Eigenschaften aufweist. Der Ingenieur Prof. Dr. Bastian E. Rapp vom Institut für Mikrosystemtechnik (IMTEK) der Universität Freiburg hat mit seinem Team den Glassomer-Prozess entwickelt, ein Verfahren, mit dem die Wissenschaftlerinnen und Wissenschaftler dieses Glas wie Kunststoff formen können.


Dreidimensionale Hohlraumstrukturen in Quarzglas.

Foto: AG Rapp

Im Fachjournal „Nature Communication“ stellen sie eine neue Anwendungsmöglichkeit vor: Sie können nun beliebige dreidimensionale Hohlraumstrukturen in Quarzglas herstellen.

Glas ist chemisch sehr resistent, weshalb Hohlräume wie optische Wellenleiter oder mikrofluidische Kanäle in ihm schwer herzustellen sind – vor allem, wenn sie dreidimensional sein sollen. Der Glassomer-Prozess von Rapp und seinem Team vereinfachte das.

Glassomer ist eine Mischung, in der hochreines Siliziumoxid als feines Pulver zu einem flüssigen Kunststoff hinzugerührt wird. Solange dieses Gemisch flüssig ist, lässt es sich wie ein Kunststoff prozessieren. Unter Lichteinwirkung härtet es dann aus, sodass es zum Beispiel gebohrt oder gefräst werden kann.

Anschließend erfolgt eine Hochtemperaturbehandlung: Der Kunststoff verbrennt, und echtes Glas bleibt zurück. Bisher durften Kanalstrukturen nicht kompliziert angelegt sein, weil die Forschenden hierfür das flüssige Material aus den Hohlräumen entfernen mussten, was bei langen Kanälen nicht gut funktioniert.

Die Freiburger Wissenschaftler gehen deshalb nun einen anderen Weg, indem sie zuerst den gewünschten Hohlraum im 3D-Drucker herstellen: Ein späterer Kanal wird als Polymerfaden gedruckt und danach mit Glassomer umgossen. Das fertige Druckerzeugnis wird anschließend auf 1.300 Grad Celsius erhitzt, sodass der Kunststoff – also auch der Polymerfaden – verbrennt. Es entsteht ein Kanal, umgeben von echtem Glas.

Originalpublikation:
Kotz, F., Risch, P., Arnold, K. et al., Rapp, B.E. (2019): Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass. In: Nature Communication. DOI: 10.1038/s41467-019-09497-z

Kontakt:
Prof. Dr. Bastian E. Rapp
Institut für Mikrosystemtechnik
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-7351
E-Mail: bastian.rapp@imtek.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2019/hohlraeume-in-3d?set_language=de

Nicolas Scherger | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kühlsystem ohne schädliche Kältemittel
01.08.2019 | Fraunhofer IPM

nachricht Batterieproduktion in Rekordgeschwindigkeit
30.07.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics