Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klebeverbindungen durch Laserstrahlung

06.07.2000


Um die Aushärtung von Polymerklebstoffen deutlich zu verbessern, konzentrieren sich Arbeiten am Laser Zentrum Hannover e.V. (LZH) auf eine effektivere Nutzung der Laserstrahlung. Durch die Verwendung von Lasern
mit Wellenlängen im nahen UV- bzw. blauen VIS-Bereich wurde die Tiefenaushärtung beschleunigt und deutlich verbessert. Aushärtezeiten im Sekundenbereich bei Tiefen im Millimeterbereich können erzielt werden.

Schon seit Beginn der 90er Jahre findet die strahlungsinduzierte Aushärtung von Polymerklebstoffen immer breitere Anwendung in der industriellen Fertigung. Als Anwender sind hier insbesondere die elektronische und optische Fertigung, medizinische Gerätetechnik und die Dentaltechnik zu nennen. Gegenüber den herkömmlichen Klebetechniken weist die strahlungsinduzierte Aushärtung von Klebstoffen einige signifikante Vorteile auf, wie beispielsweise die schnellere Aushärtung, einfachere Handhabung und gesundheitliche Unbedenklichkeit des ausgehärteten Klebstoffs.
Das Aushärten von Polymerklebstoffen ist jedoch wegen der unzureichenden Aushärtung in der Tiefe und in den Schattenzonen problematisch. Herkömmliche Bestrahlungsquellen ermöglichen eine schnelle Aushärtung nur in dünnen Klebstoffschichten - unter einem Millimeter. Eine sehr schnelle Aushärtung dieser Klebstoffe kann man lediglich mit UV-initiierbaren Photoinitiatoren erzielen. Bedingt durch eine sehr hohe Absorption nimmt die Lichtintensität jedoch mit zunehmender Tiefe deutlich ab. Insbesondere bei gefüllten Klebstoffen gestaltet sich die Aushärtung sehr schwierig.
Um die Aushärtung von Polymerklebstoffen deutlich zu verbessern, konzentrieren sich Arbeiten am Laser Zentrum Hannover e.V. (LZH) auf eine effektivere Nutzung der Laserstrahlung. Hierbei wird einerseits das prinzipielle Aushärteverhalten der Klebstoffsysteme untersucht und andererseits mechanisch-technologische Untersuchungen an den Kunststoff-Klebeverbindungen vorgenommen, um die laserstrahlungsinduzierte Klebeverbindung zu qualifizieren. Die bei den Untersuchungen verwendeten Laserstrahlungsquellen sind Excimerlaser, Argonionenlaser und frequenzvervielfachte Nd:YAG-Laser.
Durch die Verwendung von Lasern mit Wellenlängen im nahen UV- bzw. blauen VIS-Bereich wurde die Tiefenaushärtung beschleunigt und deutlich verbessert. Aushärtezeiten im Sekundenbereich bei Tiefen im Millimeterbereich können erzielt werden. Deshalb werden moderne Klebstoffsysteme so konzipiert, dass sie diese Vorteile effektiv nutzen können. Das Ziel der Untersuchungen ist eine breitere Anwendung dieser Technik in der Industrie, z. B. bei der Kapselung oder beim Fixieren elektronischer Bauteile, beim Verkleben von Verpackungen oder beim Einkleben diverser Bauteile in Fassungen.

Für mehr Information:
Laser Zentrum Hannover e.V.
Herr Dipl.-Ing. Alexander von Busse
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-374
Fax: +49 511 2788-100
e-mail: vb@lzh.de
http://www.lzh.de

Michael Botts |

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues Quantenpunkt-Mikroskop zeigt die elektrischen Potenziale einzelner Atome
11.06.2019 | Forschungszentrum Jülich GmbH

nachricht Wasserdicht dank flinker Laser
27.05.2019 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

Automatisiertes Fahren

17.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ursache von "Erschöpfungszustand" von Immunzellen gefunden

18.06.2019 | Biowissenschaften Chemie

Studie am Dresdner Uniklinikum: Schädel-Hirn-Trauma – bleibt´s beim kurzen Schrecken?

18.06.2019 | Studien Analysen

Kältefalle für Zellen und Organismen - Forschung an verbessertem Mikroskopieverfahren

18.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics