Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Born-Institut: kürzester Lichtimpuls mit Molekülschwingungen erzeugt

31.05.2001


Femtosekunden-Applikationslabor des Max-Born-Instituts (MBI). Experimenteller Aufbau zur Erzeugung der bisher schnellsten "Lichtblitze" von 3,8 fs Dauer mit einem Titan-Saphir-Kurzpulslaser. Im Bild die Physiker Dr. Georg Korn (rechts) und Dr. Nikolai Zhavoronkov, Foto: MBI/Ralf Günther



Der Impuls liegt unter 4 Femtosekunden / Anregung mit einem Titan-Saphir-Kurzpulslaser / Dr. Georg Korn: "Jetzt können ultraschnelle Phänomene mit bisher unbekannter Zeitauflösung untersucht werden"



Den weltweit kürzesten Lichtimpuls mit einer Dauer von 3,8 Femtosekunden (fs) haben Forscher des Berliner Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) erzeugt. Das teilten sie kürzlich auf der CLEO 2001 (Conference on Lasers and Electro-Optics) in Baltimore, USA, in einem Postdeadline-Beitrag mit. Danach gelang ihnen dieser Weltrekord durch Manipulation der Eigenschaften von Licht bei Wechselwirkung mit schwingenden Gasmolekülen. Zur Anregung nutzen sie einen Titan-Saphir-Laser.

Femtosekunden-Technologie zielt darauf ab, superschnelle Prozesse in Natur und Technik durch optische Verfahren zu erfassen, zu analysieren und zu steuern. Dabei wird Licht je nach Einsatzgebiet als universelle Sonde, als Werkzeug und als hoch effizienter Informationsträger eingesetzt.
Anwendungen zeichnen sich in der Mess- und Prozesstechnik, der Kommunikationstechnologie, der Medizin und Biotechnologie sowie in der Umwelttechnik und Materialentwicklung ab.

Eine Femtosekunde (fs = 10-15 sec) ist der milliardste Teil einer millionstel Sekunde - eine Größenordnung, die sich gewöhnlicher Vorstellung verschließt. Zum Vergleich: In einer Sekunde umrundet ein ausgesandtes Lichtsignal ca. sieben Mal die Erde; in einer Femtosekunde durchquert dasselbe Signal nur den Bruchteil einer Haaresbreite. Setzt man eine Femtosekunde zu einer "normalen" Sekunde in Beziehung, so entspricht das dem Verhältnis von einer Sekunde zu 32 Millionen Jahren.

Die Spitzenleistung gelang der MBI-Gruppe mit einem von ihr entwickelten neuen Verfahren zur Manipulation der Phase von Lichtimpulsen. Bisherige Verfahren basieren auf der so genannten nichtlinearen Selbsteinwirkung (Selbstphasenmodulation) des Lichtimpulses. Dieser Prozess erzeugt zusätzliche Frequenzkomponenten, die dann durch Kompression zu einem kürzeren Impuls quasi zusammengepresst werden. Dieser Prozess ist aber nicht so gut kontrollierbar.


Bei ihrem neuen Verfahren nutzen die MBI-Physiker die molekularen Schwingungen in einer Gassäule. Moleküle schwingen im Bereich unter 100 fs und sind damit als sehr schnelle Lichtmodulatoren einsetzbar. Das MBI-Team regt die schwingenden Gasmoleküle mit einem ersten starken Laserpuls, ähnlich einem Hammerschlag, an. Dann wird ein zweiter Puls durch das Gas geschickt, wobei sich seine Phase durch die bereits schwingenden Moleküle verändert und wieder neue Frequenzkomponenten entstehen. "Es ist eine kleine Variation des zeitlichen Abstands zwischen dem ersten und zweiten Puls, mit der wir die Phase des Lichtes in den richtigen Zustand bringen, so dass sich die Kompression dann leichter durchführen lässt", erklärt Projektleiter Dr. Georg Korn. Dieser Trick bietet einen weiteren Vorteil: der Prozess ist dann wesentlich besser zu kontrollieren.

Die experimentellen Arbeiten zur Entwicklung und Anwendung von Femtosekundenlasern verlangen hohes experimentelles Geschick und viel Erfahrung. "Ich hatte das große Glück, Dr. Nikolai Zhavoronkov als einen erfahrenen Laserphysiker an meiner Seite zu haben, der sich in der monatelangen Vorbereitung des Experiments engagiert hat", bemerkt Dr. Korn. Seine Arbeitsgruppe gehört zum Bereich "Cluster und Grenzflächen" (Leitung Prof. Dr. Ingolf Hertel) des Max-Born-Instituts.

Im MBI werden ultraschnelle Laser zur Aufklärung von chemischen Elementarprozessen eingesetzt, die u.a. für die Materialforschung und die Katalyse von Bedeutung sind. Die extrem kurzen Pulse können jetzt zur Untersuchung von ultraschnellen dynamischen Phänomenen mit einer bisher unbekannten Zeitauflösung herangezogen werden.
Das Max-Born-Institut verfügt gegenwärtig über 7 ultraschnelle Lasersysteme. Im Femtosekunden-Applikationslabor werden diese Anlagen auch von Wissenschaftlern des In- und Auslands und aus der Industrie vielfältig genutzt. Dabei ist die finanzielle Unterstützung im Rahmen von Förderprogrammen der Europäischen Union eine wichtige Hilfe.

Ansprechpartner im MBI: Dr. Georg Korn, Tel.: 030 / 6392 1277, e-mail: korn@mbi-berlin.de

Joachim Moerke | idw
Weitere Informationen:
http://www.mbi-berlin.de/

Weitere Berichte zu: Femtosekunde Lichtimpuls MBI Max-Born-Institut Prozess

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Jade Hochschule entwickelt Messverfahren zur Prüfung von Schweißnähten unter Wasser
31.03.2020 | Jade Hochschule - Wilhelmshaven/Oldenburg/Elsfleth

nachricht Wie bioökonomisch optimierte Ressourcen- und Energiekreisläufe bei der Produktion nachhaltiger Lebensmittel helfen
14.02.2020 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungsnachrichten

Wenn Ionen an ihrem Käfig rütteln

06.04.2020 | Energie und Elektrotechnik

Virtueller Roboterschwarm auf dem Mars

06.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics