Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

5 Jahre Geothermie-Heizwerk Neustadt-Glewe. Wärme aus den Tiefen der Erde

21.09.2000


6.000 Tonnen weniger CO2-Emissionen durch Geothermienutzung

Seit fünf Jahren erfolgt durch die Erdwärme Neustadt-Glewe GmbH in der mecklenburgischen Kleinstadt Neustadt-Glewe die Fernwärmeversorgung

5 Jahre Geothermie-Heizwerk Neustadt-Glewe. Wärme aus den Tiefen der Erde

6.000 Tonnen weniger CO2-Emissionen durch Geothermienutzung

Seit fünf Jahren erfolgt durch die Erdwärme Neustadt-Glewe GmbH in der mecklenburgischen Kleinstadt Neustadt-Glewe die Fernwärmeversorgung von Wohn- und Gewerbeeinrichtungen auch aus unterirdischen Wärmequellen. Dabei wird das Prinzip der hydrothermalen Geothermienutzung angewendet. Grundlage dafür ist eine vorhandene wasserführende Gesteinsschicht in etwa 2.450 Meter Tiefe, die angebohrt wurde. In der Bohrung steigt das 100 Grad Celsius heiße Thermalwasser bis rund 90 Meter an die Erdoberfläche heran. Eine Unterwassermotorpumpe fördert das Thermalwasser nach Obertage, drückt es durch die im Heizwerk befindlichen Wärmetauscher bis zu einer zweiten Bohrung, in welcher das auf etwa 50 Grad Celsius abgekühlte Thermalwasser der Gesteinsschicht zurückgegeben wird. Die drehzahlvariable Unterwassermotorpumpe fördert nur soviel Thermalwasser, wie für den Wärmebedarf der Kunden benötigt wird.

Die heutige Festveranstaltung zum 5-jährigen erfolgreichen Betriebsjubiläum steht unter der Schirmherrschaft von Bundesumweltminister Jürgen Trittin. Die Festrede hält Umweltstaatssekretärin Simone Probst.

Auch auf internationaler Ebene hat dieses Prinzip der Energienutzung für Aufsehen gesorgt. Bei der Vorstellung der Anlage auf dem 3. Weltkongress für Geothermie in Japan stieß insbesondere das Know-how für die Injektion des abgekühlten Wassers zurück in die tiefen Gesteinsschichten auf großes Interesse. Bedarf haben unter anderem Ungarn, Österreich, die Schweiz, Rumänien und Bulgarien angemeldet. In diesen Ländern erfolgt zur Zeit noch die Ableitung des "kalten" Wassers in Seen und Flüsse.

Die Geothermieanlage in Neustadt-Glewe verfügt mit 100 Grad Celsius über den wärmsten Tiefenwasserspeicher in Deutschland. Deshalb kann auch auf den Einsatz von Wärmepumpen verzichtet werden. Rund 90 bis 95 Prozent der benötigten Fernwärme wird aus geothermischer Energie gewonnen. Der Rest kommt aus einer gasgefeuerten Kesselanlage, die als Spitzenlast- und Redundanzanlage zur Sicherung der Wärmeversorgung im Falle von Belastungsspitzen, in extremen Winterzeiten und bei Ausfällen des Thermalwasserkreislaufes eingesetzt wird. Die Anlage ist für 21.000 MWh pro Jahr konzipiert. 1999 wurden 15.200 MWh Wärme erzeugt, davon 14.800 MWh aus Geothermie.

Mit der Geothermieanlage in Neustadt-Glewe wurde eine umweltfreundliche und nahezu kohlendioxidfrei arbeitende Fernwärmeversorgung aufgebaut. Verglichen mit dem Einsatz von Gas- oder Heizöl können hier jährlich
6.000 Tonnen CO2-Emissionen vermieden werden.

Zum Bau und Betrieb der Fernwärmeversorgung auf Basis von geothermischer Energie wurde 1992 die Erdwärme Neustadt-Glewe GmbH gegründet. Die Betriebsführung obliegt der WEMAG AG Schwerin. Derzeit beziehen 1.300 Haushalte und 20 Gewerbekunden ihre Fernwärme aus dieser Anlage.

Näheres zum Geothermie-Heizwerk Neustadt-Glewe erhalten Sie bei: Erdwärme Neustadt-Glewe GmbH, Obotritenring 40, 19053 Schwerin, Tel.: 0385-755-2267 o. 0170-921-2267. Fax: 0385-755-2822, e-mail: heiner.menzel@wemag.com. Ihr Ansprechpartner ist Dr. Heiner Menzel

Weitere Informationen zur Geothermie finden Sie, ständig aktualisiert auf unserer Homepage www.geothermie.de .

Werner Bussmann |

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics