Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nahrungsketten: Das Chaos regiert

14.02.2008
Langfristige Vorhersage von Artenhäufigkeit in Ökosystemen ist unmöglich.

Die traditionelle Idee des Gleichgewichts in der Natur wird durch eine Studie, die in der aktuellen Ausgabe von Nature (Band 451, S. 822) erschien, in Frage gestellt. Basierend auf einem über mehrere Jahre laufenden Laborexperiment zeigten holländische Wissenschaftler, dass Arten in einem marinen Nahrungsnetz selbst unter konstanten Bedingungen chaotischen Schwankungen unterworfen sind.

Dies macht eine langfristige Vorhersage der Artenhäufigkeit unmöglich. Zu den Autoren der Arbeit gehört auch Dr. Klaus D. Jöhnk, seit kurzem beim Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB). Er sagt: "Diese Arbeit ist ein Durchbruch beim Nachweis chaotischen Verhaltens in Nahrungsnetzen."

Theoretische Ökologen haben bereits in den 1970er Jahren darauf hingewiesen, dass Populationen von Pflanzen und Tieren auch ohne äußere Einflüsse in einer unvorhersehbaren Art und Weise fluktuieren können. Diese Vorhersagen, abgeleitet aus der Chaos-Theorie, zogen heftige Debatten nach sich. Nur wenige Wissenschaftler glaubten, dass Arten in natürlichen Ökosystemen solche chaotischen Schwankungen aufweisen würden.

... mehr zu:
»Nahrungsnetz

Die allgemeine Auffassung war, dass Fluktuationen nur durch eine Variation der äußeren Bedingungen zustande kommen, etwa durch Klimaveränderungen oder anderen Störungen des natürlichen Gleichgewichts. Diese klassische Perspektive wurde nun durch neue Forschungsergebnisse von Elisa Benincà und Jef Huisman von der Universität von Amsterdam, Niederlande, in Zusammenarbeit mit Kollegen aus anderen Forschungseinrichtungen in den Niederlanden, Deutschland und den Vereinigten Staaten radikal verändert.

Der Kern ihrer Arbeit besteht aus einem Laborexperiment mit einer aus Ostseewasser isolierten Planktongemeinschaft. Mehr als acht Jahre lang hielt der Rostocker Biologe Reinhard Heerkloss die Planktongemeinschaften unter konstanten Licht- und Temperaturbedingungen und maß zweimal in der Woche die Entwicklung der verschiedenen Planktonarten. Zu seiner großen Überraschung näherten sich die Abundanzen (Häufigkeiten der Organismen) der Planktonarten keinem Gleichgewichtszustand sondern fluktuierten ungewöhnlich stark. Eine statistische Analyse der Zeitreihen zeigte, dass diese Fluktuationen nicht etwa stochastischer Natur waren, sondern durch das dynamische Verhalten des Nahrungsnetzes selbst erzeugt wurden. Mit fortgeschrittenen Techniken der nichtlinearen Zeitreihenanalyse konnten die Wissenschaftler zeigen, dass es sich um deterministisch chaotisches Verhalten handelt.

Laut Elisa Benincà haben diese Ergebnisse weitreichende Konsequenzen: "Unsere Resultate zeigen, dass die Planktonabundanz in komplexen Nahrungsnetzen langfristig nicht vorhersehbar ist. Bestenfalls kann man eine Schwankungsbreite angeben. Bisher gingen wir davon aus, dass ein detaillierteres Verständnis der relevanten Prozesse es uns erlauben würde immer bessere Vorhersagen der Planktonabundanz zu erhalten, etwa auch im Hinblick auf die Reaktion auf externe Störungen wie einem Klimawandel. Wir wissen nun, dass dies nur eingeschränkt möglich ist." Theoretische Studien hatten bereits aufgezeigt, dass chaotisches Verhalten in Nahrungsnetzen möglich ist. Ein experimenteller Nachweis solchen Verhaltens konnte aber auf Grund unzureichender Langzeitdaten bis jetzt nicht durchgeführt werden.

Über den Mitautor Klaus D. Jöhnk:
Während einer vierjährigen Postdoc Anstellung an der Universität Amsterdam hat Dr. Klaus D. Jöhnk diese Studie mit initiiert und an der Auswertung der Langzeitdaten mit modernen Verfahren der nichtlinearen Zeitreihenanalyse gearbeitet. Seit August 2007 ist er Projektmitarbeiter in der Arbeitsgruppe "Molekulare Ökologie" von Dr. C. Wiedner an der Abteilung Limnologie geschichteter Seen des Leibniz-Instituts für Gewässerökologie und Binnenfischerei in Neuglobsow. Seine Hauptaufgabe ist die Entwicklung mathematischer Modelle zur Prozessanalyse, Simulation und Prognose des Auftretens nostocaler Cyanobakterien in Seen.

Für mehr Informationen kontaktieren Sie bitte:

Prof.dr. Jef Huisman, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands, phone: +31 20 5257085, mobile phone: +31 6 26792263, email: jef.huisman@science.uva.nl

Dr. Klaus D. Jöhnk, Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB), Abteilung Limnologie geschichteter Seen
Alte Fischerhütte 2, 16775 Stechlin-Neuglobsow, Germany
tel: +49 33082 69954, fax: +49 33082 69917, email: k.joehnk@igb-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.fv-berlin.de

Weitere Berichte zu: Nahrungsnetz

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Mit Mangroven und Korallen gegen Tsunamis: Team unter Göttinger Leitung untersucht den Schutz von Küstengebieten
12.12.2019 | Georg-August-Universität Göttingen

nachricht Kein Seemannsgarn: Hochseeschifffahrt soll schadstoffärmer werden
11.12.2019 | Deutsche Bundesstiftung Umwelt (DBU)

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Hefe-Spezies in Braunschweig entdeckt

12.12.2019 | Biowissenschaften Chemie

Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung

12.12.2019 | Medizin Gesundheit

Urbane Gärten: Wie Agrarschädlinge von Städten profitieren

12.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics