Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Gehirn das Scharf-Sehen vorgaukelt

13.10.2014

Psychologen der Universität Bielefeld veröffentlichen Studie

Wer glaubt, die Welt um sich herum wirklich scharf zu sehen, der irrt. Tatsächlich können unsere Augen nur einen Bruchteil der Umgebung präzise abbilden. Wie das Gehirn das Scharf-Sehen vorgaukelt, das haben Psychologen der Universität Bielefeld mit einer Experimentreihe untersucht.


Der Daumennagel am Ende eines ausgestreckten Arms: Das ist der Bereich, den das Auge tatsächlich scharf sehen kann. Foto: Universität Bielefeld

Ihre Ergebnisse stellen sie in der Oktober-Ausgabe des Fachmagazins „Journal of Experimental Psychology: General“ vor. Ihr zentraler Befund: Beim Sehen greift das Nervensystem auf frühere Seherfahrungen zurück, um vorauszusagen, wie unscharfe Objekte scharf aussehen würden.

„In unserer Studie beschäftigen wir uns mit der Frage, warum wir glauben, die Welt scharf zu sehen“, sagt Dr. Arvid Herwig von der Forschungsgruppe Neurokognitive Psychologie der Fakultät für Psychologie und Sportwissenschaft. Die Gruppe gehört auch zum Exzellenzcluster Kognitive Interaktionstechnologie (CITEC) der Universität Bielefeld und wird von Professor Dr. Werner X. Schneider geleitet.

Allein die Fovea – die zentrale Stelle der Netzhaut – kann Objekte scharf abbilden. Deshalb dürften wir eigentlich nur einen schmalen Bereich unserer Umwelt wirklich präzise sehen. Dieser Bereich entspricht etwa dem Daumennagel am Ende eines ausgestreckten Arms. Alle Seheindrücke, die außerhalb der Fovea auf die Netzhaut treffen, werden hingegen zunehmend unscharf abgebildet. Dennoch haben wir für gewöhnlich den Eindruck, einen Großteil unserer Umwelt scharf und detailliert wahrzunehmen.

Mit einer Reihe von Lernexperimenten sind Herwig und Schneider diesem Phänomen auf den Grund gegangen. Ihr Ansatz geht davon aus, dass Menschen im Laufe ihres Lebens in unzähligen Blickbewegungen lernen, den unscharfen Seheindruck von Objekten außerhalb der Fovea mit dem scharfen Seheindruck nach der Blickbewegung zum interessierenden Objekt zu verknüpfen.

So wird zum Beispiel der unscharfe Seheindruck eines Fußballs (verschwommenes Bild des Fußballs) mit dem scharfen Seheindruck nach der Blickbewegung zum Fußball verknüpft. Sieht eine Person im Augenwinkel unscharf einen Fußball, vergleicht ihr Gehirn dieses aktuelle Bild mit gespeicherten Bildern von unscharfen Objekten. Findet das Gehirn ein passendes Bild, ersetzt es den unscharfen Eindruck durch ein präzises Bild aus dem Gedächtnis. Der unscharfe Seheindruck wird ersetzt, bevor sich die Augen tatsächlich bewegen. Die Person glaubt somit, dass sie den Ball bereits genau erkennen kann, obwohl das noch nicht der Fall ist.

Die Psychologen belegen ihren Ansatz mit Eyetracking-Experimenten. Mit der Eyetracking-Technik lassen sich Blickbewegungen mit Hilfe einer speziellen Kamera präzise messen. Die Kamera nimmt 1000 Bilder pro Sekunde auf. Die Wissenschaftler haben in ihren Experimenten schnelle sprunghafte Augenbewegungen (Sakkaden) von Versuchspersonen aufgezeichnet.

Unbemerkt von den meisten Versuchsteilnehmern wurden dabei bestimmte Objekte während der Blickbewegung verändert. Das Ziel war, dass die Testpersonen bislang unbekannte neue Verknüpfungen von außerfovealen und fovealen, also von unscharfen und scharfen Seheindrücken erlernen. Anschließend wurden die Personen gebeten, visuelle Merkmale von außerfovealen Objekten anzugeben. Das Ergebnis: Die Verknüpfung eines unscharfen Seheindrucks mit einem scharfen Seheindruck kam bereits nach wenigen Minuten zustande. Der unscharfe Seheindruck wurde den neu erlernten scharfen Seheindrücken ähnlicher.

„Die Experimente zeigen, dass unser Seheindruck wesentlich von gespeicherten Erfahrungen in unserem Gedächtnis abhängt“, sagt Arvid Herwig. Laut Herwig und Schneider dienen diese Erfahrungen der Vorhersage zukünftiger Handlungseffekte („Wie würde die Welt nach einer weiteren Blickbewegung aussehen"). Oder anders formuliert: „Wir sehen nicht die aktuelle Welt, sondern unsere Vorhersagen“.

Originalveröffentlichung:
Arvid Herwig, Werner X. Schneider: Predicting object features across saccades: Evidence from object recognition and visual search. Journal of Experimental Psychology: General, http://dx.doi.org/10.1037/a0036781, erschienen im Oktober 2014 (Print-Ausgabe).

Kontakt:
Dr. Arvid Herwig, Universität Bielefeld
Fakultät für Psychologie und Sportwissenschaft
Telefon: 0521 106-4516
E-Mail: arvid.herwig@uni-bielefeld.de

Prof. Dr. Werner X. Schneider, Universität Bielefeld
Fakultät für Psychologie und Sportwissenschaft
Telefon: 0521 106-4502
E-Mail: wxs@uni-bielefeld.de

Weitere Informationen:

http://www.uni-bielefeld.de/psychologie/ae/Ae01

Jörg Heeren | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Drei Viertel der Flüsse weltweit durch menschliche Eingriffe in ihrem Lauf beeinträchtigt
09.05.2019 | Eberhard Karls Universität Tübingen

nachricht Selbstorganisierter Bewegungskreislauf ermöglicht Zellen, komplexe Suchmuster zu formen
07.05.2019 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics