Forscher zeigen erstmals: Gliale Sensoren tragen zur Feinkoordination von Bewegungen bei

Gliazellen<br>

Gliazellen sind nicht nur bei weitem zahlreicher als Nervenzellen in unserem Gehirn, sie spielen auch eine äußerst vielfältige Rolle bei nervösen Funktionen und Krankheiten. So besitzen die meisten Gliazellen Rezeptoren für Neurotransmitter und sind bei der Übertragung von Information an den Übertragungsstellen von einer auf die nächste Nervenzelle, den sog. Synapsen, mittelbar beteiligt.

Über die Rezeptoren „hören“ die Gliazellen, in unserem Gehirn auch als Sternzellen oder Astrozyten bekannt, dem „synaptischen Übertragungsgeflüster“ der Nervenzellen zu und sind oft für die rasche Entsorgung der Neurotransmitter aus dem synaptischen Bereich verantwortlich. Lernen, Gedächtnis und andere Hirnfunktionen finden vor allem an diesen Synapsen statt.

In einer Studie, an der unter anderem Arbeitsgruppen des Medizin-Campus Homburg der Universität des Saarlandes (AG Kirchhoff, Physiologie) und der TU Kaiserslautern (AG Deitmer, Lehrgebiet Zoologie) maßgeblich beteiligt waren, und die jetzt in dem amerikanischen Wissenschaftsmagazin Science http://www.sciencemag.org/content/337/6095/749.full.pdf?sid=732705e5-e4ff-48d4-95bd-09324bad67ca veröffentlicht wurde, konnte gezeigt werden, dass Gliazellen im Kleinhirn der Maus über ihre Rezeptoren – den sogenannten AMPA-Rezeptoren für den erregenden Neurotransmitter Glutamat – an der Bildung und Funktion erregender Synapsen beteiligt sind. Zudem führt der Verlust dieser glialen AMPA-Rezeptoren im Kleinhirn zu Störungen in der motorischen Feinkoordination und im Bewegungslernen der Mäuse.

In der Studie wurde die Funktion eines Gens von der Molekularbiologie über elektrophysiologische Charakterisierung bis zum organismischen Verhalten analysiert. Hiermit konnte erstmals direkt gezeigt werden, dass motorische Feinkoordination und deren zugrunde liegende Abläufe im Kleinhirn voll funktionierende Gliazellen mit gesundem Besatz an Rezeptoren benötigen. Es scheint das Wechselspiel zwischen Nerven- und Gliazellen zu sein, das für die motorischen, und wahrscheinlich auch für andere Leistungen des Gehirns, von entscheidender Bedeutung für störungsfreies Funktionieren ist.

Für Therapien von Bewegungsstörungen (Ataxien) stellt daher der Beitrag der Gliazellen an der Bewegungskoordination neue Wege in Aussicht.

Saab, A. et al., (2012) Science 337, 749-753.

Ansprechpartner:
Prof. Dr. Joachim W. Deitmer, Tel.: 0631/205-2877, E-Mail: deitmer@biologie.uni-kl.de

Media Contact

Thomas Jung idw

Weitere Informationen:

http://www.uni-kl.de

Alle Nachrichten aus der Kategorie: Studien Analysen

Hier bietet Ihnen der innovations report interessante Studien und Analysen u. a. aus den Bereichen Wirtschaft und Finanzen, Medizin und Pharma, Ökologie und Umwelt, Energie, Kommunikation und Medien, Verkehr, Arbeit, Familie und Freizeit.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer