Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

XMM-Newton: Aus Alt mach Neu

31.05.2010
Erster Einsatz des neuen Beobachtungsmodus am Weltraumteleskop XMM-Newton öffnet neue Perspektiven für das Studium von Galaxienhaufen

In einer Durchmusterung des Himmels mit dem Röntgen-Satellitenobservatorium XMM-Newton haben Wissenschaftler vom Max-Planck-Institut für extraterrestrische Physik und anderer Institutionen zwei Galaxienhaufen entdeckt, die gleichzeitig auch durch ihren Effekt auf die kosmische Mikrowellenhintergrundstrahlung mit dem South-Pole-Teleskop gefunden wurden.

Die Entdeckung mit XMM-Newton wurde erst möglich durch die Einführung des neuen Mosaik-Beobachtungsmodus, der effizient große Bereiche des Himmels in kurzer Zeit abdecken kann. Damit öffnet sich ein neues Beobachtungsfenster für Galaxienhaufen, da ähnliche Beobachtungen in anderen Wellenlängen nun mit derartigen Himmelsdurchmusterungen im Röntgenbereich kombiniert werden können.

Galaxienhaufen sind die größten klar definierten Bausteine unseres Universums. Sie zeichnen in idealer Weise die großräumige Struktur des Universums nach und liefern den Wissenschaftlern wichtige Hinweise darauf, welches theoretische kosmologische Modell die Wirklichkeit am besten beschreibt. Ihren Namen erhielten Galaxienhaufen durch die hohe Konzentration von Galaxien, die zuerst in optischen Beobachtungen gefunden wurden. Die Hunderte bis Tausende von Galaxien machen aber nicht einmal ein Zehntel der Masse eines Haufens aus, etwas mehr als ein weiteres Zehntel der Masse steckt in Gas.

Dieses Gas, das den Galaxienhaufen ausfüllt, hat Temperaturen von mehr als 10 Millionen Grad und ist damit heiß genug, um seine Wärme als Röntgenstrahlung ins All abzugeben. Aus der messbaren Temperatur und der Röntgenleuchtkraft können Wissenschaftler die Masse eines Galaxienhaufens berechnen. Dies liefert den Beweis, dass Galaxienhaufen gravitativ gebundene Strukturen sind. Für den Großteil der Masse eines Haufens wird allerdings die unsichtbare, bisher unbekannte Dunkle Materie verantwortlich gemacht.

Das Gas kann aber nicht nur direkt im Röntgenlicht beobachtet werden, sondern auch durch seine Wirkung auf die kosmische Hintergrundstrahlung, die uns aus allen Himmelsrichtungen erreicht, wie Hans Böhringer vom Max-Planck-Institut für extraterrestrische Physik erklärt: „Interessanterweise hat das gleiche Gas, das wir im Röntgenbereich sehen, auch Einfluss auf Beobachtungen im Radiobereich. Die Lichtteilchen des kosmischen Mikrowellenhintergrundes wechselwirken mit den extrem energiereichen Elektronen des ionisierten Haufengases, wenn sie den Galaxienhaufen auf ihrem Weg zu uns durchqueren. Damit wird das Spektrum der Hintergrundstrahlung modifiziert; wir sehen die Galaxienhaufen quasi als Schatten auf dem Hintergrund der kosmischen Mikrowellenstrahlung.“ Diese Wirkung ist als Sunyaev-Zeldovich Effekt (SZE) bekannt.

In einem ersten Versuch, diesen „Schattenwurf“ für Beobachtungen von Galaxienhaufen zu nutzen, wird gegenwärtig die erste große Himmelsdurchmusterung im Millimeter-Wellenlängenbereich mit dem South-Pole-Teleskop durchgeführt. Der Erfolg ließ nicht lange auf sich warten: die ersten bisher unbekannten Galaxienhaufen wurden 2008 durch den Sunyaev-Zeldovich Effekt gefunden. Um jedoch die Identifikation der Galaxienhaufen zweifelsfrei zu bestätigen und um eine unabhängige Massenbestimmung zu erhalten, brauchten die Wissenschaftler koordinierte Beobachtungen im optischen Licht und im Röntgenbereich.

„Die vom South Pole Teleskop gefundenen Galaxienhaufen sehen wir ebenfalls sehr leicht in der von uns mit XMM-Newton parallel durchgeführten Himmelsdurchmusterung in einem mit dem SPT Survey überlappenden Testfeld“, sagt Robert Suhada, der die Studie leitete. Mit Hilfe der Röntgendaten schätzten die Wissenschaftler die Masse der beiden Haufen auf über tausend Billionen (1015) bzw. 300 Billionen (3x1014) Sonnenmassen. „Einer der beiden Haufen ist extrem massereich und zählt damit zu den größten Galaxienhaufen, die je entdeckt wurden“, freut sich Robert Suhada.

Die Entdeckungen im Röntgenbereich wurden erst durch einen Beobachtungsmodus möglich, den das Betreiberteam von XMM-Newton vor kurzem neu eingerichtet hatte. Damit konnten 14 Quadratgrad des Himmels mit einem vertretbaren Aufwand (nämlich mit einer um einen Faktor 3 kürzeren Beobachtungszeit) kartiert werden, eine Fläche, die etwa dem 70fachen der Mondscheibe entspricht.

„Die neue Mosaik-Beobachtungsstrategie ermöglicht es uns, größere Gebiete des Himmels in kurzer Zeit mit XMM-Newton zu erfassen“, erklärt Maria Santos-Lleo, verantwortlich für die Betreuung der Wissenschaftler beim Einsatz von XMM-Newton. „Es ist sehr selten, dass man eine neue Betriebsart installiert, wenn sich ein Satellit in der Umlaufbahn befindet. In diesem Fall konnten wir aber eine sehr erfolgreiche Lösung finden, wie die Wissenschaftler unser Instrument in Zukunft noch besser für ihre Aufgaben einsetzen können.“ Das Röntgenobservatorium XMM-Newton arbeitet bereits seit 10 Jahren im Weltraum, das Interesse der Wissenschaftler an Beobachtungen mit diesem Instrument ist aber weiterhin ungebrochen. An viele der neuen, wichtigen wissenschaftlichen Aufgaben konnte man bei der Inbetriebnahme des Instrumentes noch gar nicht denken.

Neben den Mikrowellen- und Röntgenbeobachtungen liefern optische Aufnahmen die Rotverschiebung und damit ein Maß für die Entfernung der Haufen. Der massereiche Haufen ist demnach 4,5 Milliarden Lichtjahre (z = 0.34), der zweite Haufen fast 11 Milliarden Lichtjahre (z = 1) von der Erde entfernt. Dies ist die erste gleichzeitige und unabhängige Entdeckung von Galaxienhaufen in allen drei Wellenlängenbereichen.

„Diese Entdeckung zeigt nicht nur, dass wir Galaxienhaufen effektiv in allen drei Wellenlängenbereichen entdecken können und so komplementäre Informationen erhalten, sondern sie beweist auch, dass wir leicht entfernte Haufen mit hohen Rotverschiebungen erreichen können“, kommentiert Hans Böhringer. „Einen der beiden Haufen sehen wir zu einer Zeit, als das Universum kaum 6000 Millionen Jahre alt war, also weniger als die Hälfte seines gegenwärtigen Alters hatte.“

Mit diesen Ergebnissen und den neuen Beobachungsmöglichkeiten öffnet sich ein neues Fenster zum Universum für Studien von Galaxienhaufen. Neben dem South-Pole-Teleskop wird auch die PLANCK Mission der Europäischen Weltraumagentur ESA mehr als Tausend Galaxienhaufen mit dem Sunyaev-Zeldovich Effekt entdecken und zusammen mit koordinierten Röntgenbeobachtungen neue Einsichten in die Struktur unseres Universums liefern.

Originalveröffentlichung:

R. Šuhada, J. Song, H. Böhringer, B. A. Benson, J. Mohr, R. Fassbender, A. Finoguenov, D. Pierini, G. W. Pratt, K. Andersson, R. Armstrong and S. Desai

XMM-Newton detection of two clusters of galaxies with strong SPT Sunyaev-Zel'dovich effect signatures

Astronomy&Astrophysics Letters 514, L3 (2010)

Kontakt:

Dr. Hannelore Hämmerle (Pressesprecherin)
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3980
E-Mail: hannelore.haemmerle@mpe.mpg.de
Dr. Hans Böhringer
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3347
E-Mail: hans.boehringer@mpe.mpg.de

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpe.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie
21.10.2019 | Universität Basel

nachricht Kompakt, effizient, robust und zuverlässig: FBH-Entwicklungen für den Weltraum
21.10.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungsnachrichten

Das Stromnetz fit für E-Mobilität machen

21.10.2019 | Förderungen Preise

Kompakt, effizient, robust und zuverlässig: FBH-Entwicklungen für den Weltraum

21.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics