Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler weisen erstmals Proton-Kern nach

17.10.2014

Wissenschaftlern der Universität Leipzig und der Eidgenössischen Technischen Hochschule (ETH) Zürich ist es gelungen, das Magnetfeld des unvorstellbar winzigen Kerns eines Protons nachzuweisen.

Dafür wurden an der ETH quantenmechanische Effekte genutzt, wie Prof. Dr. Jan Meijer vom Institut für Experimentelle Physik II der Universität Leipzig sagt. "Die Methode erlaubt, das Magnetfeld des Kerns eines einzelnen Wasserstoffatoms in einem Abstand von einem Nanometer nachzuweisen und dessen Ort zu bestimmen. Dabei funktionieren die Sensoren bei Raumtemperatur und sind somit für viele Anwendungen in der Industrie und der Wissenschaft nutzbar", erklärt der Physiker. Die Forscher aus Leipzig und Zürich haben ihre neuen Erkenntnisse in der jüngsten Ausgabe des renommierten Fachmagazins "Science" veröffentlicht.


Das NV-Zentrum (roter Pfeil) kann einzelne kleine Magnetfelder, die durch Protonen -dem Kern des Wasserstoffatoms - produziert werden (blaue Pfeile) auslesen. Die NV-Zentren sollten sich möglichst nahe an der Oberfläche befinden. Mit Mikrowellen und Laser wird der Sensor berührungsfrei ausgelesen.

Foto: Prof. Christian Degen/ETH Zürich

Die Magnetfeldsensoren bestehen aus nur einem Stickstoffatom sowie einer Fehlstelle (NV-Zentrum) im Diamantgitter. Wie die Physiker herausfanden, können die Farbzentren auch sehr nahe der Oberfläche eines Diamanten erzeugt werden. Dadurch lassen sich auch Magnetfelder einzelner Atome auf der Oberfläche detektieren. Diese sogenannten NV-Zentren werden dabei berührungsfrei mit Hilfe von Licht ausgelesen. "Dies macht sie für viele zukünftige Anwendungen einsetzbar. Denn überall in der Praxis, wo Magnetfelder mit extrem hoher Präzision gemessen werden müssen, kann dieser Effekt genutzt werden", sagt Prof. Christian Degen von der ETH.

So sollen durch die neuen Erkenntnisse des deutsch-schweizerischen Forscherteams künftig wesentlich empfindlichere Biosensoren als bisher gebaut werden, wie Meijer erläutert. "Eigentlich arbeiten wir an einem Quantencomputer und versuchen dabei, jede mögliche Störung wie etwa durch das Magnetfeld einzelner Protonen zu vermeiden. In dieser Technik wurden die Störeffekte quasi als Messsignal genutzt", sagt Meijer.

Um einzelne Wasserstoffatome an der Oberfläche eines Diamanten aufzuspüren, mussten die NV-Zentren möglichst nahe an der Oberfläche erzeugt werden. "Gelungen ist dies mit einer speziellen Oberflächenbehandlung und einem sogenannten Implanter. Er erlaubt es, einzelne Atome hochpräzise nur wenige Atomlagen tief zu platzieren", sagt Dr. Sebastien Pezzagna, Physiker der Universität Leipzig. Die Forscher arbeiten nun daran, die Sensoren weiter zu verbessern, um damit einzelne Molekülstrukturen zu analysieren.

Link zur Veröffentlichung.

Doi: 10.1126/science.1259464

Weitere Informationen:
Prof. Dr. Jan Meijer
Universität Leipzig
Telefon: +49 341 32701
E-Mail: jan.meijer@uni-leipzig.de
   
Prof. Christian Degen
ETH Zürich
Telefon: +41 44 633 2336
E-Mail: degenc@ethz.ch

Susann Huster | Universität Leipzig

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics