Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

16.07.2018

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung. Sie kommen in verschiedenen Varianten vor. Ferrimagnete bilden die größte Klasse von Magneten und bestehen aus zwei Arten von Atomen.


Abb. A-C: Bildliche Darstellung des Demagnetisierungsprozesses, angeregt durch das plötzliche Aufheizen des Kristallgitters durch intensive THz-Strahlung

Fritz-Haber-Institut Berlin

Ähnlich einer Kompassnadel besitzt jedes Atom ein kleines magnetisches Moment, auch Spin genannt, welches von den Elektronen des Atoms erzeugt wird. Bei einem Ferrimagneten zeigen die magnetischen Momente der beiden Atome in entgegengesetzte Richtungen (siehe Abbildung A).

Die Gesamtmagnetisierung ist somit die Summe aller magnetischen Momente von Typ 1 (M1, blaue Pfeile) und Typ 2 (M2, grüne Pfeile). Aufgrund der entgegengesetzten Richtung ist die Größe der Gesamtmagnetisierung durch die Differenz M1-M2 gegeben.

Wird ein nicht leitender Ferrimagnet erwärmt, erreicht die Wärme zunächst das Atomgitter, wodurch sich die Atome zufällig um ihre Ruhelage bewegen. Schließlich verursacht ein Teil der Wärme auch eine zufällige Rotation (Präzession) der Spins um ihre ursprüngliche, kalte Richtung.

Dadurch geht die magnetische Ordnung verloren. Die Gesamtmagnetisierung M1-M2 nimmt ab und verschwindet schließlich, wenn die Temperatur des Ferrimagneten eine kritische Temperatur, die sogenannte Curie-Temperatur, überschreitet. Obwohl dieser Prozess von grundlegender Bedeutung ist, ist seine Dynamik noch nicht gut verstanden.

Selbst für den Ferrimagneten Yttrium-Eisen-Granat (YIG), einen der am intensivsten erforschten Ferrimagnete, ist nicht bekannt, wie lange es dauert, bis das erwärmte Atomgitter und die kalten magnetischen Spins miteinander ins Gleichgewicht kommen. Bisherige Schätzungen dieser Zeitskala unterscheiden sich um einen Faktor von bis zu einer Million.

Ein Team von Wissenschaftlern aus Berlin (Collaborative Research Center / Transregio 227 Ultrafast Spin Dynamics, Fritz-Haber-Institut und Max-Born-Institut), Dresden (Helmholtz-Zentrum), Uppsala (Schweden), St. Petersburg (Russland) und Sendai (Japan) hat nun die elementaren Schritte dieses Prozesses aufgedeckt.

„Um das Atomgitter eines YIG-Films augenblicklich und ausschließlich zu erwärmen, verwenden wir eine sehr spezifische und neuartige Art von Anregung: ultrakurze Laserlichtblitze bei Terahertz-Frequenzen. Mit einem nachträglich eintreffenden sichtbaren Laserimpuls können wir dann Schritt für Schritt die Entwicklung der zunächst kalten magnetischen Spins nachvollziehen.

Im Wesentlichen nehmen wir einen Stop-Motion-Film über die Entwicklung der Magnetisierung auf“, sagt Sebastian Maehrlein, der die Experimente durchführte. Sein Kollege Ilie Radu fasst zusammen: „Unsere Beobachtungen sprechen eine klare Sprache. Wir fanden heraus, dass eine plötzliche Erwärmung des Atomgitters die magnetische Ordnung des Ferrimagneten auf zwei verschiedenen Zeitskalen reduziert: eine unglaublich schnelle Skala von nur 1 ps und eine 100.000-mal langsamere Skala von 100 ns.“

Diese beiden Zeitskalen können analog zu Wasser in einem geschlossenen Topf, der in einen heißen Ofen gestellt wird, verstanden werden. Die heiße Luft des Ofens entspricht dem heißen Atomgitter, während die magnetischen Spins dem Wasser im Topf entsprechen (siehe Abbildung A).

Wird das Atomgitter durch den Terahertz-Laserblitz erwärmt, führen die verstärkten zufälligen Schwingungen der Atome zu einer Übertragung der magnetischen Ordnung von Spintyp 1 auf Spintyp 2. Daher werden die beiden magnetischen Momente M1 (blaue Pfeile in Abbildung B) und M2 (grüne Pfeile) um genau den gleichen Betrag reduziert (rote Pfeile). Dieser Prozess entwickelt sich auf der schnellen Zeitskala, und die atomaren Spins sind gezwungen, sich bei konstanter Gesamtmagnetisierung M1-M2 aufzuheizen, genau wie Wasser in einem geschlossenen Topf, das sein Volumen halten muss.

Der aufgeheizte Ferrimagnet möchte aber nicht nur M1 und M2, sondern auch seine Gesamtmagnetisierung M1-M2 verkleinern. Dazu muss ein Teil des Spins an das Atomgitter abgegeben werden. Diese Situation ist wiederum völlig analog zum heißen Wasser in einem geschlossenen Topf: Der Druck im Topf steigt an, wird aber durch kleine Lecks im Deckel langsam nach außen abgegeben (siehe Abbildung C). Diese Übertragung von Drehimpuls an das Atomgitter ist genau das, was im Ferrimagneten durch schwache Kopplungen zwischen den Spins und dem Gitter passiert.

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben.

Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. „Unsere Ergebnisse sind auch für Anwendungen in der Datenspeicherung relevant“, ergänzt Sebastian Maehrlein. „Der Grund ist einfach. Wann immer wir den Wert eines Bits in einem magnetischen Speichermedium zwischen 0 und 1 umschalten wollen, müssen letztlich Drehimpuls und Energie zwischen Atomgitter und Spins übertragen werden."

Wissenschaftliche Ansprechpartner:

Dr. Ilie Radu, radu@mbi-berlin.de, Tel. 030 6392 1357, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)

Prof. Dr. Tobias Kampfrath, tobias.kampfrath@fu-berlin.de, Tel. 030 8413–5222; Fritz-Haber-Institut, Department of Physical Chemistry - Office: +49 30 8413–5112

Originalpublikation:

S. F. Maehrlein, I. Radu, P. Maldonado, A. Paarmann, M. Gensch, A. M. Kalashnikova, R. V. Pisarev, M. Wolf, P. M. Oppeneer, J. Barker, T. Kampfrath, Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation. Science Advances 4, eaar5164 (2018).

Bildunterschrift ausführlich:
Heizen eines Magneten, ohne seine Magnetisierung zu ändern.
(A) Ein Ferrimagnet besteht aus zwei Spinsorten mit entgegengesetztem magnetischem Moment (grüne und blaue Pfeile). Im Experiment wird das Atomgitter des Ferrimagneten durch einen extrem kurzen Terahertz-Lichtblitz aufgeheizt. Die Situation ist analog zum Erhitzen von Luft (=Atomgitter) in einem Ofen, der einen Topf mit Wasser (=Spins) enthält. (B) Wärme wird in die Spins übertragen und erniedrigt die Magnetisierung jeder Spinsorte um genau denselben Betrag. Dieser Prozess läuft ab, indem Spin (rote Pfeile) von der blauen in die grüne Spinsorte übertragen wird. Folglich heizt sich der Magnet auf, ohne seine Gesamtmagnetisierung zu ändern! In der Topf-Analogie wird die Wärme der Ofenluft ins Wasser innerhalb des Topfes übertragen. Die Wassermenge im Topf hat sich dabei nicht geändert; jedoch hat sich ein Überdruck aufgebaut. (C) Der Spin-Überdruck führt schließlich zur Übertragung von Spin-Drehimpuls ins Atomgitter. Dabei verkleinert sich die Magnetisierung des Ferrimagneten. In der Topf-Analogie baut sich der Wasser-Überdruck durch kleine Lecks im Topfdeckel ab.

Dipl.-Geogr. Anja Wirsing | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Macht Sinn: Fraunhofer entwickelt Sensorsystem für KMU

15.08.2018 | Energie und Elektrotechnik

Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

15.08.2018 | Informationstechnologie

FKIE-Wissenschaftler präsentiert neuen Ansatz zur Detektion von Malware-Daten in Bilddateien

15.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics