Warum Nanokristalle magnetisch werden und dabei auch noch das Licht anschalten

Injizierte Elektronen bringen Nanokristalle dazu, Licht auszusenden. Grafik: get4net_Shotshop.com Quelle: TU Dortmund

Injiziert man – beispielsweise über Strom – Ladungsträger in einen Nanokristall mit dem Ziel, diese in Licht umzuwandeln, so fallen ihre Ladungen in den sogenannten Grundzustand. Dort bilden die geladenen Elementarteilchen eine „dunkle“ Konfiguration aus. Ursache hierfür ist der Eigendrehimpuls der Elektonen, also der Spin, der mit einem Kreisel vergleichbar ist.

Im Grundzustand verhalten sich die Spins der injizierten Ladungsträger in ihrer Summe so, dass eine Umwandlung in Licht eigentlich nicht möglich ist – daher der Begriff „dunkel“. Dies würde ihren Einsatz in der Optoelektronik allerdings erheblich einschränken. Schließlich werden bei der Optoelektronik Bauelemente und Verfahren entwickelt, die elektrische Energie in Licht oder Licht in elektrische Energie umwandeln.

Obwohl eine Emission von Licht eigentlich nicht möglich ist, wurde trotzdem eine intensive Lichtemission aus diesem Grundzustand heraus beobachtet. Eine Kollaboration von Wissenschaftlerinnen und Wissenschaftlern aus Gent, Paris, St. Petersburg und Washington hat unter Federführung von Prof. Dmitri Yakovlev aus dem Bereich Experimentelle Physik 2 der TU Dortmund den Grund für den scheinbaren Widerspruch gefunden. So weisen die Nanostrukturen an ihrer Oberfläche ungebundene Elektronen auf.

Mit diesen Ladungen treten die injizierten geladenen Elementarteilchen in Wechselwirkung über sogenannte Flip-Flop-Prozesse. Dabei tauschen die Eigendrehimpulse einer injizierten Ladung und einer Ladung an der Oberfläche ihre Rotationsrichtung. Dadurch wird die ursprünglich dunkle Konfiguration hell, und Lichtemission ist möglich.

Dies hat aber auch noch eine weitere Konsequenz: Durch das wiederholte Umkehren der Spins nach jeder Injektion von Ladungen werden alle Spins der Elektronen an der Oberfläche entlang einer Richtung orientiert. Darüber wird der Nanokristall magnetisch, was ebenfalls aus der Lichtemission eindeutig hervorgeht.

Das im Nanokristall vorhandene Magnetfeld ist nahezu um eine Million stärker als das Erdmagnetfeld. Die kollektive Orientierung der Oberflächenspins, ohne dass hierfür ein starkes externes Magnetfeld angelegt werden muss, war die Vision eines Pioniers der Spinphysik, Igor Merkulov aus St. Petersburg. Bedauerlicherweise hat er die Umsetzung seiner Vision nicht mehr miterleben dürfen, da er 2012 viel zu früh verstorben ist.

http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2017.22.html

Media Contact

Martin Rothenberg idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer