Ultrakompakte Beschleuniger für Wissenschaft und medizinische Forschung

Der Linearbeschleuniger FLUTE ist ein Beispiel für die kompakten und flexiblen Beschleunigeranlagen am KIT. (Foto: Markus Breig, KIT) Foto: Markus Breig, KIT

Der größte und bekannteste Teilchenbeschleuniger der Welt, der 27 Kilometer lange Large Hadron Collider, befindet sich am CERN in der Schweiz.

Mit ihm erforschen Wissenschaftlerinnen und Wissenschaftler den Aufbau der Materie. Neben ihrer herausragenden Bedeutung für die physikalische Grundlagenforschung eröffnen Beschleuniger aber noch zahlreiche weitere Anwendungsmöglichkeiten, von der Produktionstechnik bis hin zum medizinischen Einsatz, beispielsweise in der Tumortherapie oder Diagnostik.

Allerdings sind heutige Beschleunigeranlagen in Aufbau und Betrieb kostenintensiv. Wären leistungsstarke Beschleuniger deutlich kleiner, könnte diese Technologie viel häufiger zum Einsatz kommen.

Ziel der Forschung am KIT ist es daher auch, erste Anwendungen ultrakompakter Beschleunigersysteme in den Lebens- und Materialwissenschaften technologisch zu ermöglichen. Dafür erhält das KIT einen Förderanteil von 4,5 Millionen Euro von der neuen Forschungs- und Entwicklungsplattform für Beschleunigertechnologien ATHENA.

„Für die Karlsruher Wissenschaftlerinnen und Wissenschaftler eröffnet ATHENA den Zugang zu plasmabasierten Beschleunigern. Das passt ideal zur Beschleunigerforschung am Standort KIT, wo wir das Ziel verfolgen, diese Technologie auf breiter Basis für die Gesellschaft zu erschließen“, sagt der Präsident des KIT, Professor Holger Hanselka.

Insbesondere die Speicherung ultrakurzer Elektronenpakete in einem eigens dafür geplanten Elektronenspeicherring sei eine herausragende Anwendung dieser neuen Technologie, so die leitende Beschleunigerphysikerin am KIT, Professorin Anke-Susanne Müller.

Diese erlaube das Erhöhen der nutzbaren Lichtpulsraten um einen Faktor von einer Million für Anwendungen von Terahertzstrahlung in der Medizin und in den Materialwissenschaften. Außerdem spare dieses Vorgehen Energie, da gespeicherte Elektronen längere Zeit nutzbar seien.

„Im Bereich der Diagnose von Beschleunigersignalen mit hoher Wiederholrate erweitern wir regelmäßig die Grenzen des physikalisch und technologisch Machbaren und unterstützen bereits heute unsere Partner in der Helmholtz-Gemeinschaft sowie in Zukunft auch innerhalb von ATHENA mit unseren Technologien“, fügt Dr. Erik Bründermann, Projektleiter des ATHENA-Teilprojektes am KIT, hinzu.

Der Linearbeschleuniger FLUTE, der im Juli 2017 in Karlsruhe in Betrieb ging, ist mit seinen knapp zwölf Metern ein Beispiel für die kompakten und flexiblen Beschleunigeranlagen am KIT. Durch das Projekt soll sich die Beschleunigungsstrecke in Zukunft aber noch weiter reduzieren – diese allein könnte zukünftig auf die Größe weniger Zentimeter schrumpfen.

Koordiniert vom Deutschen Elektronen-Synchrotron (DESY) wollen die an ATHENA beteiligten Helmholtz-Zentren außerdem zwei deutsche Leuchtturmprojekte der Beschleunigerforschung auf Grundlage innovativer plasmabasierter Teilchenbeschleuniger und hochmoderner Lasertechnologie aufbauen: beim DESY in Hamburg eine Elektronen- und am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine Hadronen-Beschleunigeranlage.

An beiden Anlagen sollen verschiedene Einsatzgebiete entwickelt werden, die von einem kompakten Freie-Elektronen-Laser über innovative medizinische Anwendungen bis hin zu neuen Einsatzmöglichkeiten in Kern- und Teilchenphysik reichen. Sobald die Nutzungsreife in einem Gebiet erreicht worden ist, könnten neue, kompakte Anlagen in anderen Helmholtz-Zentren, aber auch an Universitäten und Krankenhäusern aufgebaut werden.

Die sechs an dem Projekt beteiligten Beschleunigerzentren der Helmholtz-Gemeinschaft umfassen, neben KIT, DESY und HZDR, das Forschungszentrum Jülich, das Helmholtz-Zentrum Berlin, das GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt sowie das Helmholtz-Institut Jena.

Die ATHENA-Arbeiten sind durch die EU-geförderte Designstudie EuPRAXIA mit ihren 40 Partnerinstituten, ebenfalls durch DESY koordiniert, eng in die europäische Forschungslandschaft eingebettet. Damit hat das deutsche Spitzenforschungsprojekt ATHENA von Beginn an auch eine klare europäische Perspektive und Ausrichtung.

Weiterer Kontakt:

Margarete Lehné, stellv. Pressesprecherin, Tel.: +49 721 608-21157, E-Mail: margarete.lehne@kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 500 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php

http://margarete.lehne@kit.edu
http://www.sek.kit.edu/presse.php

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer