Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Wien entwickelt den weltweit stärksten Terahertz-Quantenkaskadenlaser

29.10.2013
Ob bildgebende Diagnostik im Medizinbereich, Analyse unbekannter Substanzen oder ultraschnelle drahtlose Datenübertragung – Terahertzquellen sind in vielen Anwendungsbereichen gefragter denn je. An der TU Wien gelang nun ein technologischer Durchbruch.

Sehen kann man sie nicht, die Terahertz-Wellen, doch Anwendungsideen gibt es genug. Sie durchdringen viele Materialien, die für sichtbares Licht undurchsichtig sind und eignen sich ausgezeichnet zum Aufspüren von zahlreichen Molekülen.


Ein einsatzbereiter Terahertz-Quantenkaskadenlaser
TU Wien

Erzeugen lässt sich Terahertz-Licht mit Hilfe von Quantenkaskadenlasern, die nur wenige Millimeter groß sind. Diese ganz besondere Art von Lasern besteht aus maßgeschneiderten Halbleiterschichten im Nanometerbereich. An der TU Wien gelang nun ein neuer Weltrekord: Durch die spezielle Verschmelzung von symmetrischen Laserstrukturen konnte eine viermal so hohe Lichtleistung erzielt werden wie bisher.

Elektronensprünge erzeugen Terahertz-Licht

In jeder Schicht des Quantenkaskadenlasers können die Elektronen nur ganz bestimmte Energieniveaus annehmen. Legt man genau die richtige elektrische Spannung an, springen die Elektronen von Schicht zu Schicht und geben dabei jedes Mal Energie in Form von Licht ab. So lässt sich die exotische Terahertzstrahlung mit einer Wellenlänge im Submillimeterbereich (zwischen Mikrowellen- und Infrarot) effizient erzeugen.

Hohe Laserleistung für Science-Fiction-hafte Anwendungen

Viele Moleküle absorbieren Licht in diesem Wellenlängenbereich auf ganz charakteristische Weise, wodurch ein optischer Fingerabdruck entsteht. Dank dieser Eigenschaft kann Terahertz-Licht für chemische Detektoren eingesetzt werden. Auch für bildgebende Verfahren in der Medizin ist diese Strahlung hochinteressant: Einerseits hat sie weniger Energie als Röntgenstrahlung, ist also nicht ionisierend und daher ungefährlich, andererseits hat sie aber eine geringere Wellenlänge als Mikrowellenstrahlung, wodurch eine bessere Auflösung erzielt wird.

Diese Möglichkeiten erinnern stark an den legendären „Tricorder“ aus der TV-Serie „Star Trek“, einem tragbaren multifunktionalen Analyse- und Diagnosegerät. Neben einer kompakten Lichtquelle ist für Messungen an entfernten Objekten und für bildgebende Verfahren aber auch eine hohe optische Leistung erforderlich.

Eine Möglichkeit die Laserleistung zu erhöhen ist eine größere Anzahl von Halbleiterschichten zu verwenden. Je mehr Schichten der Laser hat, umso öfter wechselt das Elektron beim Durchgang den Energiezustand und umso mehr Photonen werden ausgesandt. Die Herstellung eines Lasers mit vielen Schichten ist allerdings schwierig, hier stößt man auf technologische Grenzen. Dem Team rund um Prof. Karl Unterrainer vom Institut für Photonik der TU Wien gelang es nun allerdings, zwei separate Quantenkaskadenlaser durch einen sogenannten Bonding-Prozess präzise übereinander zu stapeln.

„Das klappt aber nur bei einem ganz speziellen Design der Quantenkaskaden-Struktur“, erklärt Christoph Deutsch (TU Wien), „mit herkömmlichen Halbleiterlasern wäre das prinzipiell unmöglich.“ Man benötigt dazu symmetrische Laser, durch welche Elektronen in beiden Richtungen gleichermaßen hindurchwandern können. Das Team musste daher zuerst die herstellungsbedingten Asymmetrien der Laser erforschen und kompensieren.

Doppelt ergibt Vierfach – der Rekordlaser

Je mehr Schichten der Laser hat, umso öfter kann ein Elektron den Energiezustand wechseln und umso mehr Photonen werden erzeugt. Zusätzlich wird die Effizienz aufgrund verbesserter optischer Eigenschaften erhöht. „Deshalb bringt eine Verdoppelung der Halbleiterschichten sogar eine Vervierfachung der Leistung mit sich“, erklärt Martin Brandstetter (TU Wien). Der bisherige Weltrekord für Terahertz-Quantenkaskadenlaser wurde mit knapp 250 Milliwatt vom renommierten Massachusetts Institute of Technoloy (MIT) erzielt, der TU-Laser erreicht nun ein ganzes Watt. Das ist nicht nur ein weiterer Rekord der TU Wien, sondern stellt auch das Überschreiten einer wichtigen Hürde für den Einsatz von Terahertz-Quantenkaskadenlasern dar.

Originalpublikationen:
M. Brandstetter et al., “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions”, Appl. Phys. Lett., 103, 171113 (2013)

C. Deutsch et al., „Dopant migration effects in terahertz quantum cascade lasers”, Appl. Phys. Lett., 102, 201102 (2013).

Rückfragehinweise:

Dipl.-Ing. Martin Brandstetter
Institut für Photonik
Technische Universität Wien
Gußhausstraße 27-29, 1040 Wien
T: +43-1-58801-38732
martin.brandstetter@tuwien.ac.at
Dr. Christoph Deutsch
Institut für Photonik
Technische Universität Wien
Gußhausstraße 27–29, 1040 Wien
T: +43-1-58801-38773
christoph.deutsch@tuwien.ac.at
Weitere Informationen:
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/quantenkaskadenlaser/

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics