Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trennung von Blutzellen im Mikrofluss

24.05.2012
Von Augsburger Physikern entwickelte Methode nutzt die Liftkraft im laminaren Fluss zur Separierung von roten Blutkörperchen und Blutplättchen. / Breite Anwendungsmöglichkeiten in "Lab-on-a-Chip"-Systemen zur medizinischen Diagnostik und zur Zellaufbereitung.

Eine neue Methode zur Auftrennung von Blutzellen hat die Mikrofluidikgruppe von Dr. Thomas Franke am Lehrstuhl für Experimentalphysik I der Universität Augsburg jetzt in den "Applied Physics Letters" vorgestellt.

Ein hydrodynamischer Effekt, die sogenannte Liftkraft, sorgt dafür, dass sich deformierbare Teilchen in winzigen Kanälen von der Größenordnung menschlicher Kapillaren von der Wand entfernen. Je nachdem wie groß oder deformierbar die Zellen sind, bewegen sie sich unterschiedlich schnell Richtung Kanalmitte. Dies führt am Ende des Mikrokanals zu einem Positionsunterschied, der zur Trennung der Zellen genutzt werden kann. Anwendungsmöglichkeiten dieser Methode liegen einerseits in der medizinischen Diagnose weit verbreiteter Krankheiten wie Malaria, Diabetes oder Bluthochdruck, andererseits lässt sie sich auch zur Aufbereitung von Zellen in Laboren nutzen.

Welche physikalischen Effekte spielen im Blutfluss eine Rolle? Wie verhalten sich rote Blutkörperchen in menschlichen Blutgefäßen? Was können wir daraus lernen und können wir diese Effekte sinnvoll nutzen? Antworten auf diese Fragen sucht das Team von Franke bereits seit einigen Jahren. Mikrofluidik, die Wissenschaft von der Strömung kleiner Flüssigkeits- oder Gasmengen, spielt dabei eine wichtige Rolle. In Kanälen der Größe eines menschlichen Haares treten nämlich Effekte auf, die wir aufgrund unserer makroskopischen Alltagserfahrungen nicht kennen und so nicht erwarten.

Ein Beispiel hierfür ist der laminare Fluss, in dem Flüssigkeiten wirbelfrei nebeneinander fließen können. Die Flüssigkeit fließt hierbei in Schichten, die sich nicht miteinander vermischen. Ein gänzlich neuer Effekt tritt jedoch auf, wenn sich deformierbare Objekte, wie beispielsweise biologische Zellen in einem solchen laminaren Fluss bewegen. Diese können sich nämlich sehr wohl quer zur Strömungsrichtung bewegen, und so in benachbarte Strömungsschichten gelangen. In der Nähe einer begrenzenden Wand ist dieser Effekt immer so gerichtet, dass die Zellen sich von dieser entfernen. Dieser hydrodynamische Lift-Effekt ist desto stärker ausgeprägt, je größer und weicher die Zellen sind.

Im menschlichen Körper führt dies dazu, dass die großen und weichen roten Blutkörperchen zumeist in der Mitte der Blutgefäße fließen, was den Strömungswiderstand enorm verringert, während die (kleineren) Blutplättchen näher an der Wand bleiben, wo sie im Falle einer Verletzung für den Wundverschluss gebraucht werden.

Imitation des Blutflusses auf einem Mikrochip

Dass dieser Effekt bionisch, also auf dem Weg einer technischen Umsetzung biologischer Prinzipien, auf einem kleinen Chip imitiert und zum Trennen von Zellen genutzt werden kann, haben die Augsburger Wissenschaftler nun folgendermaßen experimentell nachgewiesen: Sie injizierten eine Mischung aus Blutzellen in einen rechteckigen Mikrokanal mit einer Kantenlänge von 100 Mikrometern im Querschnitt (vgl. Abb. 1). Dort werden die Zellen zunächst von einem weiteren Zufluss an den Kanalboden gedrückt, bevor sie sich auf den Weg durch den 2 Zentimeter langen Kanal machen. Am ersten Messpunkt (x1) sind die roten Blutkörperchen und die Blutplättchen noch durchmischt und im Mittel auf gleicher Höhe. Auf ihrem Weg durch den Kanal steigen die roten Blutkörperchen dann aber deutlich weiter zur Kanalmitte hin als die Blutplättchen, so dass Blutkörperchen und Blutplättchen am Punkt x2 also voneinander getrennt werden können. Dass dieser Effekt nicht nur von der Größe der Zellen abhängt, sondern auch von ihrer Deformierbarkeit und Form, konnte durch die erfolgreiche Trennung von Blutplättchen und gleich großen Polystyrolkügelchen nachgewiesen werden.

"Der große Vorteil unserer Methode ist, dass sie sich in Form eines Einwegartikels umsetzen lässt und zum Antrieb des Flusses nicht einmal eine Pumpe benötigt wird", erläutert Thomas Geislinger, Erstautor der Veröffentlichung. Das wenige Zentimeter große System erfülle damit die Kriterien für die Integration in sogenannte "Lab-on-a-Chip"-Systeme, es werde sich also als Teil eines kleinen Labors auf einem einzigen Mikrochip nutzen lassen.

Solche Minilabore finden in der Medizin zur Diagnose von zahlreichen Krankheiten wie Malaria, Diabetes oder Bluthochdruck Verwendung. Da sie billig sind und fast überall betrieben werden können, ist ihre Entwicklung insbesondere für die medizinische Versorgung in Entwicklungsländern von enormer Bedeutung.
Originalveröffentlichung:

T. M. Geislinger, B. Eggart, S. Braunmüller, L. Schmid, and T. Franke, Separation of blood cells using hydrodynamic lift, Applied Physics Letters, Vol. 100, p. 183701 (2012); DOI: 10.1063/1.4709614 ( http://apl.aip.org/resource/1/applab/v100/i18/p183701_s1 )

Ansprechpartner:
Dipl.-Phys. Thomas Geislinger
Microfluidics and Biological Physics Group
Experimentalphysik I
Universität Augsburg
Telefon +49(0)821-598-3311
thomas.geislinger@physik.uni-augsburg.de

PD Dr. Thomas Franke
Group Leader Microfluidics and Biological Physics
Experimentalphysik I
Universität Augsburg
Telefon: +49 (0)8 21 598-3312
thomas.franke@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.physik.uni-augsburg.de/exp1/mitarbeiter/franke_thomas/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics