Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tief im Herzen des Orionnebels

12.07.2016

VLT-Infrarotaufnahme bringt unerwartet viele Objekte niedriger Masse zu Tage

Noch nie zuvor konnten Wissenschaftlern so tief in das Herzen des Orionnebels blicken, wie es nun mit dem HAWK-I-Infrarotinstrument am Very Large Telescope (VLT) der ESO in Chile gelang. Das beeindruckende Bild enthüllt etwa zehn Mal so viele Braune Zwerge und isolierte Objekte planetarer Masse, wie bisher bekannt.


Dieses beeindruckende Bild der Sternentstehungsregion im Orionnebel gelang aus mehreren Aufnahmen mit der HAWK-I-Infrarotkamera am Very Large Telescope der ESO in Chile. Hierbei handelt es sich um die tiefste Aufnahme, die je von dieser Region gemacht wurde. Sie enthüllt mehr sehr lichtschwache Objekte im planetaren Massenbereich als erwartet.

Herkunftsnachweis: ESO/H. Drass et al.

Die Entdeckung sorgt nun dafür, dass das bisherige weithin akzeptierte Szenario, wie die Sternentstehungsgeschichte in Orion ablief, möglicherweise überdacht werden muss. An der Entdeckung beteiligt waren auch Wissenschaftler aus Bochum und Heidelberg.

Ein internationales Team aus Astronomen hat sich das außergewöhnliche Leistungsvermögen des HAWK-I-Infrarotinstruments am Very Large Telescope (VLT) der ESO zunutze gemacht, um die bislang tiefste und flächendeckendste Aufnahme des Orionnebels [1] zu erhalten. Das Ergebnis ist nicht nur ein Bild von beeindruckender Schönheit, sondern es offenbart auch eine unerwartete Fülle an lichtschwachen Braunen Zwergen und isolierten Objekten planetarer Masse. Allein das Vorhandensein dieser Körper mit niedriger Masse liefert einen spannenden Einblick in die Geschichte der Sternentstehung im Nebel selbst.

Der berühmte Orionnebel erstreckt sich im Sternbild Orion über etwa 24 Lichtjahre und ist von der Erde aus mit dem bloßen Auge als verschwommener Fleck im Schwert des Orion sichtbar. In Nebeln wie dem Orionebel wird das Gas durch die ultraviolette Strahlung der vielen heißen Sterne ionisiert, die darin geboren werden, so dass der Nebel hell leuchtet.

Durch die räumliche Nähe des Orionnebels [2] zur Erde eignet er sich hervorragend dazu, sowohl die Prozesse und die Geschichte der Sternentstehung in solchen Umgebungen besser zu verstehen, als auch die Anzahl der Sterne zu bestimmen, die sich mit unterschiedlichen Massen bilden.

Amelia Bayo (Universidad de Valparaíso, Valparaíso in Chile und Max-Planck-Institut für Astronomie in Heidelberg), Koautorin des neuen Fachartikels und Mitglied der Forschungsgruppe, erklärt, warum das wichtig ist: „Wenn wir Belege für unsere aktuellen Theorien der Sternentstehung finden wollen, ist es wichtig zu verstehen, wie viele Objekte mit geringer Masse im Orionnebel vorkommen. Wir verstehen jetzt, dass die Art und Weise, wie diese Objekte mit geringer Masse entstehen, von ihrer Umgebung abhängt.

Für Aufregung hat das neue Bild gesorgt, da es eine unerwartet große Zahl an Objekten mit niedriger Masse zu Tage brachte, was wiederum nahelegt, dass im Orionnebel verhältnismäßig deutlich mehr Objekte niedriger Masse entstehen als in uns näher gelegenen und weniger aktiven Sternentstehungsregionen.

Um den Prozess der Sternentstehung zu verstehen, rechnen Astronomen zusammen, wie viele Objekte unterschiedlicher Masse in Regionen wie dem Orionnebel entstehen [3]. Im Vorfeld dieser Arbeit hatten die meisten gefundenen Objekte eine Masse von etwa einem Viertel der Sonnenmasse. Die Entdeckung einer großen Zahl neuer Objekten im Orionnebel mit Massen, die deutlich unterhalb dieses Werte liegen, hat nun dafür gesorgt, dass in der Verteilung der Anzahl der Sterne noch eine zweite Häufung bei einer weitaus kleineren Masse zu finden ist.

Diese Beobachtungen deuten auch darauf hin, dass die Zahl der Objekte in Planetengröße um einiges höher sein könnte, als bisher gedacht. Zwar existiert die Technologie im Moment noch nicht, mit der es möglich wäre, diese Objekte ohne weiteres beobachten zu können, jedoch wird sich das mit der Inbetriebnahme des zukünftigen European Extremely Large Telescope (E-ELT) der ESO im Jahr 2024 ändern.

Der Erstautor Holger Drass (Astronomisches Institut, Ruhr-Universität Bochum, Bochum und Pontificia Universidad Católica Santiago de Chile) schwärmt: „Unsere Ergebnisse fühlen sich für mich so an wie ein flüchtiger Blick in eine neue Ära der Planeten- und Sternentstehungsforschung. Die riesige Zahl vagabundierender Planeten, die wir bereits mit den derzeitigen Beobachtungsmöglichkeiten finden, lässt mich hoffen, dass wir mit dem E-ELT eine ganze Menge kleinerer Planeten in Erdgröße entdecken werden.

Endnoten

[1] Nebel wie der berühmte in Orion werden auch als HII-Regionen bezeichnet, da sie ionisierten Wasserstoff enthalten. Diese gewaltigen Wolken aus interstellarem Gas sind im Universum Orte der Sternentstehung.

[2] Der Orionnebel ist schätzungsweise etwa 1350 Lichtjahre von der Erde entfernt.

[3] Diese Information wird dazu genutzt, eine sogenannte Ursprüngliche Massenfunktion (im Englischen als Initial Mass Function oder IMF bezeichnet) zu erstellen – mit ihr lässt sich beschreiben, aus wie vielen Sternen unterschiedlicher Masse eine Sternpopulation bei ihrer Geburt besteht. Diese liefert Einblicke in die Ursprünge der Sternenpopulation. In anderen Worten, eine genaue Ursprüngliche Massenfunktion zu bestimmen ist in der Erforschung der Sternentstehung von grundlegender Bedeutung, genauso wie eine solide Theorie für die Erklärung des Ursprungs dieser Funktion.

Weitere Informationen

Die hier präsentierten Forschungsergebnisse von H. Drass et al. sind unter dem Titel „The bimodal initial mass function in the Orion Nebula Cloud” in der Fachzeitschrift Monthly Notices of the Royal Astronomical Society erschienen.

Die beteiligten Wissenschaftler sind H. Drass (Astronomisches Institut, Ruhr-Universität Bochum; Pontificia Universidad Católica de Chile, Santiago, Chile), M. Haas (Astronomisches Institut, Ruhr-Universität Bochum), R. Chini (Astronomisches Institut, Ruhr-Universität Bochum, Bochum; Universidad Católica del Norte, Antofagasta, Chile), A. Bayo (Universidad de Valparaíso, Chile; Max-Planck-Institut für Astronomie, Heidelberg-Königstuhl) , M. Hackstein (Astronomisches Institut, Ruhr-Universität Bochum), V. Hoffmeister (Astronomisches Institut, Ruhr-Universität Bochum), N. Godoy (Universidad de Valparaíso, Chile) und N. Vogt (Universidad de Valparaíso, Chile).

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist einer der Hauptpartner bei ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das European Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Holger Drass
Pontificia Universidad Católica de Chile / Astronomisches Institut, Ruhr-Universität Bochum
Santiago / Bochum, Chile / Germany
Mobil: +491714890578
E-Mail: hdrass@aiuc.puc.cl

Amelia Bayo
Universidad de Valparaíso / Max-Planck Institut für Astronomie
Valparaíso / Königstuhl, Chile / Germany
Mobil: +56 981381715
E-Mail: amelia.bayo@uv.cl

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1625.

Dr. Carolin Liefke | ESO-Media-Newsletter

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung
21.02.2020 | Universität Paderborn

nachricht 10.000-mal schnellere Berechnungen möglich
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics