Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Superrechenkraft für schnelle Elektronen

12.06.2012
Woher kommen die schnellsten Elektronen im Sonnenwind? Das versuchen Physiker der Universität Würzburg herauszufinden. Ein Expertengremium hat ihnen dafür jetzt 60 Millionen Stunden Rechenzeit auf dem derzeit schnellsten zivilen Computer in Europa zugebilligt.
Jede Sekunde schickt die Sonne rund eine Million Tonnen Materie ins Weltall. Vor allem kleine und leichte Teilchen sind darin vertreten wie Elektronen, Protonen und Alphateilchen. Unter der Bezeichnung „Sonnenwind“ breiten sie sich in alle Richtungen aus; einige von ihnen treffen nach kurzer Zeit auch auf die Erdatmosphäre.

„Die meisten dieser Teilchen strömen mit einer Geschwindigkeit von etwa 400 Kilometer pro Sekunde an der Erde vorbei. Allerdings haben Satellitenbeobachtungen gezeigt, dass etwa eins von einer Milliarde Teilchen eine wesentlich größere Geschwindigkeit aufweist, die mehr als das Hundertfache der üblichen betragen kann“, sagt Dr. Felix Spanier, wissenschaftlicher Mitarbeiter am Lehrstuhl für Astronomie der Universität Würzburg. Gemeinsam mit seinem Doktoranden Patrick Kilian will Spanier in den kommenden Monaten aufklären, woher dieser Geschwindigkeitsunterschied kommt. Ebenfalls an dem Projekt beteiligt sind der Informatiker Stefan Siegel und der Masterstudent Andreas Kempf.
Hermit, der Supercomputer

Wertvolle Unterstützung haben sie dafür jetzt von einer Gutachterkommission am Höchstleistungsrechenzentrum Stuttgart (HLRS) bekommen: Die Kommission hat der Gruppe um Felix Spanier 60 Millionen Stunden Rechenzeit auf „Hermit“, dem derzeit schnellsten zivilen Supercomputer in Europa, zur Verfügung gestellt. „Damit können wir hochaufgelöste Simulationen durchführen, die zeigen sollen, wie Elektronen so stark beschleunigt werden“, sagt Spanier.
Hermit wurde erst am 28. Februar dieses Jahres in Stuttgart in Betrieb genommen. Das von der Firma Cray gebaute System liefert mit seinen gut 7000 Prozessoren insgesamt etwas über ein Peta-Flops, erledigt also eine Million Milliarden Rechenschritte pro Sekunde.

„Wie beim Zugang zu anderen Großgeräten auch, wird die Rechenzeit nicht von der Universität eingekauft, sondern aufgrund von Anträgen bewilligt“, erklärt Patrick Kilian das Auswahlverfahren. Wissenschaftler, die den Rechner für ihre Forschung nutzen wollen, beschreiben ihr geplantes Projekt und begründen, wieso gerade ihnen Zugang gewährt werden soll. Die Anträge werden üblicherweise zweimal im Jahr gebündelt von Mitarbeitern des Rechenzentrums bewertet. Diese müssen klären, welche Projekte machbar und sinnvoll sind, und vergeben dementsprechend Rechenzeit.

Woher die schnellen Elektronen kommen

„Derzeit geht die Wissenschaft davon aus, dass diese schnellen Teilchen erzeugt werden, wenn die Sonne bei einer Eruption Masse auswirft und diese beim Auftreffen auf den Sonnenwind eine Schockfront ausbildet“, sagt Patrick Kilian. Die Details dieser Beschleunigung sind jedoch nicht vollständig bekannt, viele Fragen sind noch offen. Antworten sollen die Untersuchungen der Würzburger Physiker liefern.

„Wir arbeiten mit hochaufgelösten Simulationen, die das Verhalten von Milliarden von Elektronen und Protonen und die elektrischen und magnetischen Felder zwischen ihnen zeitlich und räumlich aufgelöst berechnen, erklärt Kilian. Weil Felder und Teilchen immer wechselseitig auf einander wirken, bräuchten die Wissenschaftler für ihre Berechnungen keine Annahmen über die Mikrophysik im Sonnenwind. Die komplexe Dynamik ergebe sich allein aus dem Wechselspiel der Bestandteile. „Mit der von uns verwendeten Simulationstechnik können wir sowohl den Weg als auch die Herkunft schneller Teilchen zurückverfolgen und so den Mechanismus der Teilchenbeschleunigung besser verstehen“, hofft Kilian.

Simulation statt Satellit

Und warum simulieren Physiker diese Prozesse höchst aufwändig auf superschnellen Rechnern, anstatt sie direkt vor Ort im Weltall zu beobachten? Ganz einfach: „Weil Satellitenmissionen enorm teuer und deshalb nur begrenzt machbar sind“, sagt Patrick Kilian. Und weil die Beschränkung der Messgeräte, die die Satelliten an Bord haben, die Untersuchung des Sonnenwinds an Ort und Stelle nicht unbedingt verbessern.

Kontakt
Dr. Felix Spanier, T (0931) 31-84932, fspanier@astro.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Elektron Physik ProTon Rechner Simulation Sonnenwind Superrechenkraft Teilchen Weltall

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

nachricht Mission BepiColombo: Jenaer Sensor hilft, Geheimnisse des Merkur zu entschlüsseln
19.10.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics