Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Signale aus dem absoluten Nichts

02.10.2015

Konstanzer Physikern gelang die direkte Messung von Vakuum-Fluktuationen

Welche Eigenschaften hat das Vakuum, das absolute Nichts? Physiker gingen bislang davon aus, dass es nicht möglich sei, die Eigenschaften des Nichts – des Grundzustandes des leeren Raumes – direkt zu vermessen.


Veranschaulichung von Vakuum-Fluktuationen

Claudius Riek

Einem Team von Konstanzer Physikern um Prof. Dr. Alfred Leitenstorfer ist nun durch weltweit führende optische Messtechniken genau dies gelungen. Mit Lichtimpulsen, die kürzer sind als eine halbe Lichtschwingung im untersuchten Spektralbereich, konnten sie sogenannte Vakuum-Fluktuationen beobachten. Diese Felder existieren selbst im absoluten Nichts und bei totaler Dunkelheit, also auch dann, wenn die Intensität des Lichts und der Radiowellen komplett verschwindet.

Die Forschungsergebnisse sind von fundamentaler Bedeutung für die Weiterentwicklung der Quantenphysik. Sie werden im renommierten Wissenschaftsjournal Science veröffentlicht; eine Online-Version erscheint bereits am 1. Oktober 2015.

Die Existenz von Vakuum-Fluktuationen war in der Theorie bereits bekannt, sie folgt aus der Heisenbergschen Unschärferelation. Diese besagt, dass elektrische und magnetische Felder niemals gleichzeitig verschwinden können. Daher treten selbst im Grundzustand von Licht und Radiowellen, also in absoluter Dunkelheit, endliche Schwankungen des elektromagnetischen Feldes auf.

Ein unmittelbarer experimenteller Nachweis dieses grundlegenden Phänomens galt bislang aber als ausgeschlossen. Es wurde davon ausgegangen, dass sich Vakuum-Fluktuationen stets nur indirekt in der Natur manifestieren, in einem breiten Spektrum an Konsequenzen. Diese reichen von der spontanen Lichtemission angeregter Atome beispielsweise in einer Leuchtstoffröhre bis zu Einflüssen auf die Struktur des Universums bereits während des Urknalls.

Aufbauten zur Messung elektrischer Felder mit extrem hoher zeitlicher Auflösung und Empfindlichkeit haben es nun ermöglicht, allen Vermutungen zum Trotz Vakuum-Fluktuationen direkt zu detektieren. Weltführende optische Technologien und spezielle Ultrakurzpuls-Lasersysteme höchster Stabilität bilden die Grundlage dieser Studie an der Universität Konstanz.

Diese Technologien wurden vom Konstanzer Forschungsteam selbst entwickelt, das zudem eine genaue Beschreibung der Resultate auf Basis der Quantenfeldtheorie erarbeitet hat. Die zeitliche Auflösung des Experiments liegt im Femtosekundenbereich – dem Millionstel einer Milliardstel Sekunde. Gemessen wurde mit einer nur noch durch die Quantenphysik begrenzten Empfindlichkeit. „Wir können durch diese extreme Präzision erstmalig direkt sehen, dass wir ständig von elektromagnetischen Vakuum-Fluktuationsfeldern umgeben sind“, zieht Alfred Leitenstorfer sein Fazit.

„Das wissenschaftlich Überraschende an unseren Messungen ist, dass wir direkt Zugriff auf den Grundzustand eines Quantensystems gewinnen, ohne diesen zu verändern, beispielsweise durch Verstärkung auf endliche Intensität“, erläutert Leitenstorfer, der von den Forschungsergebnissen selbst überrascht ist: „Es hat uns ein paar Jahre lang schlaflose Nächte beschert – wir mussten alle Möglichkeiten eventueller Störsignale ausschließen“, schmunzelt der Physiker.

„Insgesamt stellt sich heraus, dass unser Zugang auf elementaren Zeitskalen, also kürzer als eine Schwingungsperiode der untersuchen Lichtwellen, den Schlüssel darstellt zum Verständnis der überraschenden Möglichkeiten, die unser Experiment erschließt.“

Das Projekt wird im Rahmen eines „ERC Advanced Grant“ des Europäischen Forschungsrates gefördert.

Originalpublikation:
C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer: „Direct Sampling of Electric-Field Vacuum Fluctuations“
Online-Version ab 1. Oktober 2015 in Science Express unter: http://www.sciencemag.org/content/early/recent

Hinweis an die Redaktionen:
Fotos können im Folgenden heruntergeladen werden:

Experimenteller Aufbau im Labor: http://pi.uni.kn/2015/096-1-Laboraufbau.jpg
Bildtext: Weltführend in der optischen Messtechnik und Lasertechnologie: Mit ultrakurzen Lichtimpulsen tastet das Experiment elektromagnetische Felder ab, die auf Grund der Quantenphysik selbst bei absoluter Dunkelheit noch im leeren Raum vorhanden sind. Die Abbildung zeigt Doktorand Claudius Riek, Erstautor der Studie, beim Justieren seines Aufbaus.

Veranschaulichung von Vakuum-Fluktuationen: http://pi.uni.kn/2015/096-2-Illustration.jpg
Bilderläuterung: Vakuum-Fluktuationen lassen sich als grundlegende Schwankungen des Lichtfeldes selbst in der totalen Dunkelheit vorstellen, deren positive (rot) und negative (blau) Bereiche zufällig im Raum verteilt sind und sich ständig mit hoher Geschwindigkeit ändern – ähnlich dem weißen Rauschen auf einem Bildschirm ohne Signaleingang. Die Ausschläge werden umso größer, je kleiner die Raumbereiche und Zeiten sind, über die ein Messinstrument mittelt. Daher tastet das Experiment von Riek et al. ein minimales Raum-Zeit-Volumen ab, dessen laterale Dimensionen Delta x und Delta y durch die starke Fokussierung des Abtast-Laserstrahls festgelegt sind. Die räumliche Länge Delta z und zeitliche Dauer Delta t des Femtosekunden-Abtastimpulses (grün) sind über die Lichtgeschwindigkeit miteinander verknüpft und definieren die longitudinale Ausdehnung. Die Schwankungsbandbreite Delta E des elektrischen Vakuum-Feldes folgt dann aus einem relativ einfachen mathematischen Zusammenhang, in den außer dem vierdimensionalen Abtastvolumen Delta x Delta y Delta z Delta t nur fundamentale Naturkonstanten eingehen: Das Planck’sche Wirkungsquantum ħ und die Permittivität des Vakuums Epsilon 0.

Detailansicht des Experiments: http://pi.uni.kn/2015/096-3-Detailansicht.jpg
Bildtext: Detaillierte Ansicht des zentralen Teils im experimentellen Aufbau zur direkten Detektion von Vakuum-Fluktuationen. Links ist der für die Messung verwendete elektro-optische Kristall in einer Halterung zwischen zwei goldbeschichteten Parabolspiegeln zu erkennen, die der Fokussierung und Rekollimation der extrem breitbandigen Lichtfelder dienen. Rechts davon befindet sich ein spezieller Strahlteiler zur Überlagerung der ultrakurzen Abtast-Lichtimpulse mit mittelinfraroten Quantenfeldern. Ringsum angeordnet sind mechanische und optische Präzisionskomponenten für die Justage des Strahlengangs zu sehen. Die hochspezielle Femtosekunden-Lichtquelle sitzt außerhalb des hier abgebildeten Bereichs.

Porträtfoto von Prof. Dr. Alfred Leitenstorfer: http://pi.uni.kn/2015/096-4-Leitenstorfer.jpg
Bildtext: Alfred Leitenstorfer ist Professor für Experimentalphysik an der Universität Konstanz. Sein Lehrstuhl forscht an der Weltspitze in der Ultrakurzzeitphysik und den damit verbundenen optischen Technologien.

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 88-3603
E-Mail: kum@uni-konstanz.de

Prof. Dr. Alfred Leitenstorfer
Universität Konstanz
Fachbereich Physik und Centrum für Angewandte Photonik(CAP)
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 88-3818
E-Mail: Alfred.Leitenstorfer@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics