Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie aus sichtbaren Laserstrahlen Röntgenstrahlung wird

19.04.2010
Physiker der Universität Jena weisen den Weg für eine neue Klasse von kohärenten Röntgenlasern / Forschungsergebnisse erscheinen in renommiertem Journal "Nature Physics"

Sei es die Zielankunft eines Formel-1-Rennens oder der Flügelschlag eines Kolibris - um schnelle Bewegungen auf ein Foto zu bannen, braucht es sehr kurze Belichtungszeiten. Das gilt nicht nur für die Fotografie sondern auch für wissenschaftliche Untersuchungsmethoden etwa die zeitaufgelöste Laserspektroskopie.

"Mit ultrakurzen Laserpulsen lassen sich extrem schnelle Phänomene, etwa Schwingungen innerhalb von Molekülen und Atomen darstellen", weiß Prof. Dr. Christian Spielmann von der Friedrich-Schiller-Universität Jena. "Da es sich um sehr kleine Materiestrukturen handelt, müssen die Laserpulse zudem sehr kurzwellig sein", so der Inhaber des Lehrstuhls für Quantenelektronik.

Für die Untersuchung hochgeladener Ionen beispielsweise, mit denen sich der Physiker der Jenaer Uni gemeinsam mit Kollegen der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt beschäftigt, ist Laserlicht aus dem Bereich der Röntgenstrahlung nötig. "Bisher ließ sich Laserlicht im Bereich der Röntgenstrahlung allerdings nur schwer mit für spektroskopische Untersuchungen ausreichender Intensität erzeugen", so Prof. Spielmann. Außerdem sei das Spektrum verfügbarer Röntgenlaser auf wenige Wellenlängen beschränkt. Der Physiker und sein Team von der Uni Jena haben jetzt gemeinsam mit Kollegen der GSI Darmstadt eine Methode entwickelt, wie sich Röntgenstrahlung soweit verstärken lässt, dass sie in einem kohärenten Strahl - ähnlich einem Laser - emittiert wird. Das renommierte Wissenschaftsjournal "Nature Physics" hat die Forschungsergebnisse soeben auf seiner Website veröffentlicht (http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1638.html), bevor sie auch in einer der nächsten Printausgaben des Magazins erscheinen werden.

Ausgangspunkt für die Erzeugung intensiver Röntgenstrahlung ist Laserlicht aus dem sichtbaren Spektrum. "Dieses fokussieren wir in einem Strahl aus Argon-Gas, wobei sogenannte ,hohe harmonische Strahlung' entsteht und die sichtbare Laserstrahlung in den Röntgenbereich verschoben wird", erläutert Dr. Jozsef Seres, Forscher in Prof. Spielmanns Team, ein bereits länger bekanntes Phänomen. Allerdings galt der Umwandlungsgrad von sichtbarem Laserlicht in Röntgenstrahlung bisher als gering.

In ihren Experimenten haben Prof. Spielmann und seine Kollegen nun den Gasdruck des Argonstrahls sukzessive erhöht und den Umwandlungsgrad des Laserlichts in Röntgenstrahlung gemessen. Wie erwartet, stieg die Intensität der Röntgenstrahlung mit dem wachsenden Gasdruck an. In einzelnen Spektralbereichen haben die Physiker aber ein viel stärkeres Anwachsen beobachtet, als theoretisch zu erwarten war. "Diese Zunahme deutet auf eine sogenannte ,parametrische' Verstärkung hin", so der Jenaer Laserexperte Spielmann.

Um ihre Experimente erklären zu können, haben die Autoren ein theoretisches Modell entwickelt, dass beschreibt, unter welchen Umständen Röntgenstrahlung parametrisch verstärkt werden kann: Ein Laser wird in einen Gasstrahl fokussiert und erzeugt zum einen die "hohe harmonische" Strahlung. "Gleichzeitig präpariert der Laserstrahl aber auch die Gasatome in einer Weise, dass sie in der Lage sind, einfallendes Licht zu verstärken, ähnlich wie in einem Laser", so Seres. Damit sei es möglich, intensives Röntgenlicht in einem weiten Spektralbereich zu erzeugen. Mit ihrer nun veröffentlichten Methode, so die Jenaer Physiker, wird es in Zukunft möglich sein, eine neue Klasse von Röntgenquellen zu entwickeln, die energetische Röntgenpulse in einem weiten Spektralbereich und in einem kohärenten Strahl emittieren.

Originalpublikation:
Seres J., Seres E., Hochhaus D., Ecker B., Zimmer D., Begnoud V., Kuehl T., Spielmann C.: Laser-driven amplification of soft X-rays by parametric stimulated emission in neutral gases. Nature Physics, Published online: 18 April 2010, doi:10.1038/nphys1638
Kontakt:
Prof. Dr. Christian Spielmann
Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena
Max-Wien-Platz 1
07743 Jena
Tel.: 03641 / 947230
E-Mail: christian.spielmann[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1638.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein Turbolader für den Superrechner JUWELS
15.11.2019 | Forschungszentrum Jülich

nachricht Lichtimpulse mit wenigen optischen Zyklen durchbrechen die 300 W-Barriere
14.11.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: Veränderungen der Chiralität von Molekülen in Echtzeit beobachten

Chirale Moleküle – Verbindungen, die als Bild und Spiegelbild vorkommen – spielen eine wichtige Rolle in biologischen Prozessen und in der chemischen Synthese. Chemikern der ETH Zürich ist es nun erstmals gelungen, mit Hilfe von Ultrakurzzeit-Laserpulsen Änderungen der Chiralität während einer chemischen Reaktion in Echtzeit zu beobachten.

Manche Moleküle können in zwei spiegelbildlichen Formen existieren, ähnlich wie unsere Hände. Obwohl solche sogenannten Enantiomere fast identische...

Im Focus: Durchbruch in der Malariaforschung

Eine internationale Forschungsgruppe um den Zellbiologen Volker Heussler von der Universität Bern hat hunderte genetische Schwachstellen des Malaria-Parasiten Plasmodium identifiziert. Diese sind in der Medikamenten- und Impfstoffentwicklung dringend erforderlich, um die Krankheit dereinst ausrotten zu können.

Trotz grosser Anstrengungen in Medizin und Wissenschaft, sterben weltweit immer noch mehr als 400'000 Menschen an Malaria. Die Infektionskrankheit wird durch...

Im Focus: Bauplan eines bakteriellen Kraftwerks entschlüsselt

Wissenschaftler der Universität Würzburg und der Universität Freiburg gelang es die komplexe molekulare Struktur des bakteriellen Enzyms Cytochrom-bd-Oxidase zu entschlüsseln. Da Menschen diesen Typ der Oxidase nicht besitzen, könnte dieses Enzym ein interessantes Ziel für neuartige Antibiotika sein.

Sowohl Menschen als auch viele andere Lebewesen brauchen Sauerstoff zum Überleben. Bei der Umsetzung von Nährstoffen in Energie wird der Sauerstoff zu Wasser...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Antibiotika aus dem Meer

18.11.2019 | Biowissenschaften Chemie

Lebende Brücken: Mit alten indischen Bautechniken moderne Städte klimafreundlich gestalten

18.11.2019 | Architektur Bauwesen

„Moonwalk“ für die Wissenschaft zeigt Verzerrungen im räumlichen Gedächtnis

18.11.2019 | Studien Analysen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics