Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwerste Atome im Rampenlicht

29.09.2016

Die Analyse von Atomspektren ist von grundlegender Bedeutung für das Verständnis der Struktur der Atome. Bislang waren die schwersten Elemente für Untersuchungen mit optischer Spektroskopie nicht zugänglich, da sie weder in der Natur vorkommen noch in wägbaren Mengen künstlich erzeugt werden können. An Atomen des Elements Nobelium, die an der GSI-Beschleunigeranlage erzeugt wurden, ist es nun erstmals gelungen einen Blick in den inneren Aufbau zu werfen. Mittels Laserspektroskopie konnten einzelne Atome des Elements untersucht werden und verschiedene atomare Anregungszustände nachgewiesen werden. Das Experiment wurde am GSI Helmholtzzentrum durchgeführt. Nature berichtet.

Die Analyse von Atomspektren ist von grundlegender Bedeutung für das Verständnis der Struktur der Atome. Bislang waren die schwersten Elemente für Untersuchungen mit optischer Spektroskopie nicht zugänglich, da sie weder in der Natur vorkommen noch in wägbaren Mengen künstlich erzeugt werden können. An Atomen des Elements Nobelium mit der Ordnungszahl Z=102, die sie an der GSI-Beschleunigeranlage erzeugten, ist es nun Wissenschaftlern erstmals gelungen einen Blick in den inneren Aufbau sehr schwerer Atome zu werfen.


Die optische Zelle zur Laser-Resonanzionisationsspektroskopie an Nobelium. Zu diesem Zweck wurde die Zelle an der Fokalebene des Geschwindigkeitsfilters SHIP (links) aufgebaut.

G. Otto, GSI Helmholtzzentrum für Schwerionenforschung

Mittels Laserspektroskopie konnten sie einzelne Atome des Elements untersuchen und verschiedene atomare Anregungszustände nachweisen. Das Experiment wurde unter Leitung der Abteilung Superschwere Elemente Physik am GSI Helmholtzzentrum für Schwerionenforschung von einer internationalen Kollaboration durchgeführt, an der unter anderem Wissenschaftler von GSI, der Johannes Gutenberg-Universität Mainz (JGU) und dem Helmholtz-Institut Mainz (HIM) beteiligt waren. Über ihre Ergebnisse berichten die Forscher im Fachmagazin Nature.

Von den meisten der heute 118 bekannten Elemente sind die Energiespektren bekannt. Die Elemente jenseits von Fermium, die sogenannten Transfermium-Elemente, mit mehr als 100 Protonen im Kern und der entsprechend gleichen Zahl von Elektronen in der Elektronenhülle entziehen sich jedoch bisher den experimentellen Untersuchen.

Doch gerade die relativistischen Effekte, ausgelöst durch die hohen Geschwindigkeiten, mit denen sich die Elektronen um Atomkerne mit einer derart hohen Protonenzahl bewegen, und auch die Wechselwirkungen zwischen den zahlreichen Elektronen bestimmen maßgeblich die innere Struktur der Atome. Wie alle Transfermium-Elemente ist auch Nobelium experimentell nur sehr schwer zugänglich. Es kommt in der Natur nicht vor und lässt sich nur künstlich und in geringen Mengen erzeugen. Daher sind seine Eigenschaften und die innere Struktur weitestgehend unbekannt.

Mit einer hochempfindlichen Methode, die am Institut für Physik und dem Institut für Kernphysik der Universität Mainz in der Arbeitsgruppe von Professor Hartmut Backe und Dr. Werner Lauth seit Anfang der 90er Jahre entwickelt wurde, ist es den Forschern nun erstmals gelungen, atomare Anregungszustände in Nobelium nachzuweisen und zu charakterisieren.

„An der GSI-Beschleunigeranlage haben wir durch den Beschuss dünner Blei-Folien mit Kalzium-Projektilen die Atomkerne der Reaktionspartner zu dem Isotop Nobelium-254 verschmolzen. Am bei GSI betriebenen SHIP-Separator haben wir anschließend die Nobelium-Isotope isoliert und so eine Bestrahlung mit Laserlicht ermöglicht“, beschreibt Professor Michael Block, Leiter der Abteilung Superschwere Elemente Physik am GSI Helmholtzzentrum und der Sektion Superschwere Elemente Physik am HIM, das Experiment.

Die Energieabstände in der Elektronenhülle ermittelt das Team durch Variation der Energie des eingestrahlten Laserlichts. Passt der Abstand, wird das Laserlicht absorbiert und ein Elektron aus dem Atom entfernt, wodurch das Atom zum positiv geladenen Ion wird. Dieses Ion wird anschließend anhand seines radioaktiven Zerfalls eindeutig nachgewiesen. „Der Experimentaufbau ist so sensitiv, dass für die Durchführung unserer Untersuchungen eine Erzeugungsrate von wenigen Atomen pro Sekunde ausreichend ist. Dabei existieren die radioaktiven Nobelium-Atome gerade mal 50 Sekunden, bevor sie wieder zerfallen“, sagt Dr. Mustapha Laatiaoui, GSI-Wissenschaftler und Leiter des Experiments.

Nachdem der erste atomare Übergang in Nobelium-254 bestimmt wurde, konnten die Untersuchungen sogar auf das kurzlebigere Isotop Nobelium-252 ausgedehnt werden, das nur mit einer fünffach geringeren Produktionsrate als Nobelium-254 erzeugt werden kann. Die Messung der Energieverschiebung eines atomaren Übergangs zwischen verschiedenen Isotopen liefert Informationen über die Größe und Form der jeweiligen Atomkerne.

Mit dem Experiment ist es erstmals gelungen, Untersuchungen der atomaren Struktur eines Transfermium-Elements am Beispiel Nobelium (Z= 102) mittels Laserspektroskopie durchzuführen. Die extrem hohe Präzision, mit der die Energien der atomaren Zustände in Laser-Experimenten gemessen werden können, liefert die Basis für weitergehende theoretische Arbeiten und eröffnet neue Perspektiven für zukünftige Präzisionsexperimente zur Messungen atomarer und nuklearer Eigenschaften instabiler Atomkerne im Bereich der superschweren Elemente.

Die Experimente wurden gemeinsam von Wissenschaftlern des GSI Helmholtzzentrums für Schwerionenforschung, der Johannes Gutenberg-Universität Mainz, des Helmholtz-Instituts Mainz, der Technischen Universität Darmstadt (Deutschland), der KU Leuven (Belgien), der Universität Liverpool (Vereinigtes Königreich) und des TRIUMF (Vancouver, Kanada) durchgeführt.

Weitere Informationen:

https://www.gsi.de/start/aktuelles/detailseite/2016/09/29/schwerste-atome-im-ram...
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature19345.html

Dr. Ingo Peter | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Direkte Abbildung von Riesenmolekülen
24.05.2019 | Max-Planck-Institut für Quantenoptik

nachricht MiLiQuant: Quantentechnologie nutzbar machen
23.05.2019 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics