Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reise zum Merkur mit Berner Beteiligung

17.10.2018

Am Samstag, 20. Oktober 2018 um 03:45 Uhr MEZ soll die Raumsonde BepiColombo vom Weltraumbahnhof Kourou in Französisch-Guayana ihre Reise zum Merkur antreten. Mit an Bord der Raumsonde der europäischen Weltraumorganisation ESA und der japanischen Weltraumorganisation JAXA sind Instrumente, die am Physikalischen Institut der Universität Bern konzipiert und gebaut wurden: Das Laser Altimeter BELA – das grösste und heikelste Instrument der Mission – und das neuartige Massenspektrometer STROFIO.

Die 6,40 Meter hohe und 4,1 Tonnen schwere Raumsonde BepiColombo wird mit einer Ariane 5 Trägerrakete ihre Reise zum Merkur antreten. Die Sonde selbst besteht aus zwei Raumfahrzeugen: dem von der europäischen Weltraumorganisation ESA konstruierten Mercury Planetary Orbiter MPO und dem von der japanischen Weltraumorganisation JAXA konstruierten Mercury Magnetospheric Orbiter MMO.


BELA am Physikalischen Institut der Universität Bern.

© Universität Bern


Künstlerische Impression von BepiColombo beim Merkur.

© ESA

Die beiden Raumfahrzeuge fliegen in einem gekoppelten System gemeinsam zum Merkur, werden dort aber auf unterschiedliche Umlaufbahnen gebracht. Der MMO wird die magnetosphärische Wechselwirkung zwischen dem Planeten und dem Sonnenwind untersuchen. Der MPO wird auf eine Umlaufbahn abgesenkt werden, die optimal für die Fernerkundung der Planetenoberfläche ist.

3D-Bild des Merkurs und Analyse der Atmosphäre dank Berner Instrumenten

Das Laser Altimeter BELA ist eines der wichtigsten und heikelsten Experimente an Bord des MPO. Das Instrument wurde von einem internationalen Konsortium unter der Leitung der Universität Bern und dem Deutschen Zentrum für Luft- und Raumfahrt DLR entwickelt.

Zielsetzung ist die Vermessung der Form, der Topographie, und der Morphologie der Oberfläche von Merkur. «Im Wesentlichen können wir mit BELA ein 3D-Bild des gesamten Planeten erstellen», erklärt Nicolas Thomas, Co-Projektleiter von BELA und Direktor des Physikalischen Instituts der Universität Bern.

Das zweite Berner Instrument an Bord von BepiColombo ist STROFIO, ein neuartiges Massenspektrometer. Projektleiter ist Peter Wurz, Professor am Physikalischen Institut der Universität Bern und Co-Leiter der Abteilung für Weltraumforschung und Planetologie. Er sagt: «Wir werden mit STROFIO die sehr dünne Atmosphären von Merkur – man spricht von einer Exosphäre – erfassen und die chemische Zusammensetzung analysieren.»

Wie Wurz weiter sagt, ist STROFIO speziell für die dünne Atmosphäre von Merkur und deren Messung auf der MPO Umlaufbahn gebaut. «STROFIO ist zudem in der Lage, das Signal der Atmosphäre der Raumsonde selbst effektiv zu unterdrücken», erklärt Wurz.

Peter Wurz und Nicolas Thomas waren bereits von Anfang an in die BepiColombo-Mission involviert: Die beiden Berner Weltraumforscher waren Teil der ESA-Arbeitsgruppe (Science Advisory Group), die diese Mission konzipiert hat. «Zu den grössten Herausforderungen der Mission zählt die Hitze, die uns beim Merkur aufgrund seiner Nähe zur Sonne erwartet», sagt Nicolas Thomas. Die Berner Forschenden mussten die Instrumente so konzipieren und bauen, dass diese die Hitze der Sonne aushalten können, die beim Merkur zehnmal so gross sein kann wie auf der Erde.

Eine lange und risikoreiche Reise

Sieben Jahre wird die Reise der europäisch-japanischen Raumsonde zum Merkur, dem kleinsten Planeten unseres Sonnensystems, dauern. «BepiColombo fliegt dabei unter anderem zweimal an der Venus und sechsmal am Merkur vorbei, um abzubremsen, da die Sonde sonst auf die Sonne stürzen würde», erklärt Nicolas Thomas. Diese Manöver müssen sehr präzise ausgeführt werden, wie Peter Wurz sagt: «Zuletzt findet das Manöver zur Einkoppelung in eine Merkurumlaufbahn statt; diese wird mit einem chemischen Antrieb durchgeführt wird. Unsere Nerven werden sicher sehr angespannt sein.»

Hat BepiColombo die Zielumlaufbahn einmal erreicht, wird die Datenübertragung zur Erde etwa 15 Minuten in Anspruch nehmen. Die wissenschaftlichen Untersuchungen und Experimente bei Merkur sollen schliesslich ein bis zwei Jahre dauern.

Mehr Informationen zur Mission BepiColombo auf der ESA-Webseite:
https://www.cosmos.esa.int/web/bepicolombo/home

Mehr Informationen zu BELA auf der ESA-Webseite:
https://www.cosmos.esa.int/web/bepicolombo/bela

Mehr Informationen zu STROFIO auf der ESA-Webseite:
https://www.cosmos.esa.int/web/bepicolombo/serena

Berner Weltraumforschung: Seit 50 Jahren an der Weltspitze mit dabei

Die Berner Weltraumforschung in Zahlen ergibt eine stattliche Bilanz: 25mal flogen Instrumente mit Raketen in die obere Atmosphäre und Ionosphäre (1967-1993), 9mal auf Ballonflügen in die Stratosphäre (1991-2008), 33 Instrumente flogen auf Raumsonden mit, und ein Satellit wurde gebaut (CHEOPS, Start 1. Hälfte 2019).

Die erfolgreiche Arbeit der Abteilung Weltraumforschung und Planetologie (WP) des Physikalischen Instituts der Universität Bern wurde durch die Gründung eines universitären Kompetenzzentrums, dem Center for Space and Habitability (CSH), gestärkt. Der Schweizer Nationalsfonds sprach der Universität Bern zudem den Nationalen Forschungsschwerpunkt (NFS) PlanetS zu, den sie gemeinsam mit der Universität Genf leitet.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Nicolas Thomas
Universität Bern, Physikalisches Institut, Weltraumforschung und Planetologie (WP)
Aktuell nur per Email erreichbar: nicolas.thomas@space.unibe.ch

Prof. Dr. Peter Wurz
Universität Bern, Physikalisches Institut, Weltraumforschung und Planetologie (WP)
Mobile: +41 79 637 46 12
E-Mail: peter.wurz@space.unibe.ch

Weitere Informationen:

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2018/medie...

Nathalie Matter | Universität Bern

Weitere Berichte zu: Atmosphäre BepiColombo MPO Orbiter Planetologie Raumsonde Umlaufbahn Weltraumforschung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmische Schlange
20.11.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht InSight: Touchdown auf dem Mars
19.11.2018 | Max-Planck-Institut für Sonnensystemforschung

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics