Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel um Mott-Isolatoren gelöst

08.12.2016

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Ob Wasser zu Eis gefriert, Eisen entmagnetisiert oder eine Legierung supraleitend wird – für Physiker steckt dahinter immer ein Phasenübergang. Diese unterschiedlichen Phänomene versuchen sie zu verstehen, indem sie nach universellen Eigenschaften suchen. Forscher der TU Dresden und der Universität Frankfurt haben nun eine wegweisende Entdeckung bei einem Phasenübergang gemacht, der von einem elektrischen Leiter zu einem Isolator führt (Mott-Metall-Isolator-Übergang).


Elektronen vor dem Hintergrund des Atomgitters – die Bestandteile eines Festkörpers.

Dr. Ulrich Tutsch

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen Elektronen, die für den Stromtransport verantwortlich sind.

Entgegen der gängigen Lehrmeinung, wonach dieser Phasenübergang allein durch die Elektronen bestimmt wird, haben Forscher an der TU Dresden vor wenigen Jahren theoretisch vorhergesagt, dass das atomare Gitter des Festkörpers grundlegend diesen Übergang beeinflusst. Nun gelang die experimentelle Verifikation dieser Vorhersage wie in der aktuellen Ausgabe der Fachzeitschrift “Science Advances” berichtet wird.

Motiviert durch die theoretischen Arbeiten des TUD-Wissenschaftlers Dr. Markus Garst untersuchte das Team von Prof. Michael Lang vom Physikalischen Institut der Universität Frankfurt die Längenänderungen des Atomgitters nahe des Übergangs mit extrem hoher Auflösung. Dies war nur mit Hilfe einer selbst entwickelten, weltweit einzigartigen Technik möglich, die solche Messungen bei tiefen Temperaturen unter variablem äußerem Druck erlaubt. So konnte erstmals experimentell nachgewiesen werden, dass neben den Elektronen auch das Atomgitter – das Gerüst des Festkörpers - an diesem Phasenübergang maßgeblich beteiligt ist.

„Diese experimentelle Ergebnisse werden einen Paradigmenwechsel beim Verständnis eines der zentralen Phänomene aktueller Festkörperforschung einleiten“, urteilt Prof. Michael Lang. Der Mott-Metall-Isolator-Übergang wird nämlich mit außergewöhnlichen Phänomenen wie der Hochtemperatursupraleitung in Kupferoxid-basierten Materialien in Verbindung gebracht. Diese bieten ein enormes technisches Potenzial für zukünftige Anwendungen.

Die Ergebnisse bestätigen außerdem die Idee, dass in der Nähe des Phasenübergangs die Komponenten des Systems nicht nur mit ihren unmittelbaren Nachbarn wechselwirken, sondern aufgrund der Steifigkeit des Festkörpers über große Abstände hinweg „kommunizieren“. Dies ändert die universellen Eigenschaften am Phasenübergang. „Die aktuellen Erkenntnisse eröffnen einen neuen Blick auf den Mott-Metall-Isolator-Übergang und erlauben eine verfeinerte theoretische Beschreibung seiner Eigenschaften“, erklärt Privatdozent Dr. Markus Garst vom Institut für Theoretische Physik der TU Dresden.

Die Forschungsarbeit wurde von der Deutschen Forschungsgemeinschaft im Rahmen sowohl des Transregio-Sonderforschungsbereichs „Condensed Matter Systems with Variable Many-Body Interactions“ unter Leitung von Prof. Michael Lang als auch des Sonderforschungsbereiches „Correlated Magnetism: From Frustration To Topology“ an der TU Dresden gefördert.

Publikation:
Elena Gati, Markus Garst, Rudra S. Manna, Ulrich Tutsch, Bernd Wolf, Lorenz Bartosch, Harald Schubert, Takahiko Sasaki, John A. Schlueter, and Michael Lang, Breakdown of Hooke’s law of elasticity at the Mott critical endpoint in an organic conductor, Science Advances 2, e1601646 (2016).

Abbildung: Elektronen vor dem Hintergrund des Atomgitters – die Bestandteile eines Festkörpers. Die gegenseitige Abstoßung der Elektronen sorgt dafür, dass sie engen Kontakt vermeiden. Dies behindert den Elektronenfluss, und das System kann zu einem Isolator werden. (Copyright: Dr. Ulrich Tutsch)

Informationen für Journalisten:
Prof. Dr. Michael Lang
Goethe-Universität Frankfurt
Tel.: +49 (0) 69 798-47241
E-Mail: Michael.Lang@physik.uni-frankfurt.de

PD Dr. Markus Garst
TU Dresden
Tel. +49 (0) 351 463-32847
E-Mail: Markus.Garst@tu-dresden.de

Kim-Astrid Magister | Technische Universität Dresden
Weitere Informationen:
http://www.tu-dresden.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Graphen auf dem Weg zur Supraleitung
12.11.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Datensicherheit: Aufbruch in die Quantentechnologie
09.11.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

MagicMoney: Offline bezahlen – mit deinem Smartphone

13.11.2018 | Wirtschaft Finanzen

5G sichert Zukunft von Industrie 4.0 – DFKI mit der SmartFactoryKL auf der SPS IPC Drives

13.11.2018 | Messenachrichten

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics