Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenverschränkung leichter messbar

22.03.2016

Physiker haben eine neue Methode entwickelt, mit der relativ einfach ermittelt werden kann, ob Teilchen miteinander verschränkt sind. Die nun in der Fachzeitschrift Nature Physics präsentierte Methode ist vor allem für den Nachweis von Quantenverschränkung in großen Teilchensystemen interessant und könnte helfen, Messverfahren präziser zu machen und Materie besser zu verstehen.

Verschränkung ist ein quantenphysikalisches Phänomen, das nicht nur Albert Einsteins Phantasie anregte – er sprach von einer möglichen „spukhaften Fernwirkung“ –, sondern für die Entwicklung von Quantentechnologien eine entscheidende Ressource darstellt.


Physiker haben eine neue Methode entwickelt, mit der relativ einfach ermittelt werden kann, ob Teilchen miteinander verschränkt sind.

IQOQI/Ritsch

Viele im Labor erforschte Quantenanwendungen beruhen auf dieser Eigenschaft, durch die ein System aus mehreren Teilchen nicht mehr als Kombination unabhängiger Teilchenzustände, sondern nur als gemeinsamer Zustand beschrieben werden kann. Quantenverschränkung ist allerdings nicht einfach nachzuweisen – vor allem, wenn viele Teilchen involviert sind.

„Kleine Teilchenensemble können heute im Labor sehr genau kontrolliert werden, und damit lässt sich auch die Verschränkung relativ einfach bestimmen“, sagt der Innsbrucker Quantenphysiker Philipp Hauke. „Sind viele Teilchen miteinander verschränkt, wird eine solche Messung extrem aufwändig bis unmöglich, weil der Aufwand mit der Zahl der Teilchen exponentiell ansteigt.“

Philipp Hauke und Peter Zoller vom Institut für Theoretische Physik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften haben nun gemeinsam mit Markus Heyl von der Technischen Universität München und Luca Tagliacozzo vom Institute of Photonic Sciences (ICFO) in Barcelona einen neuen Weg gefunden, wie gewisse Aspekte der Vielteilchenverschränkung bestimmt werden können – und dies unabhängig von der Größe des Systems und mittels Standardmessmethoden.

Empfindlichkeit als Maß für Verschränkung

„Bei komplexeren Systemen mussten bisher sehr, sehr viele Messungen durchgeführt werden, um ein Maß für die Verschränkung zwischen vielen Teilchen zu erhalten“, sagt Philipp Hauke. „Unsere Methode umgeht dieses Problem und kann selbst für die Bestimmung von Verschränkung in makroskopischen Objekte angewendet werden, für die es bisher kaum Möglichkeiten gab.“

Die Wissenschaftler können dazu im Labor bereits etablierte Messverfahren verwenden. Dies haben die Theoretiker in der nun in der in der Fachzeitschrift Nature Physics veröffentlichten Arbeit an mehreren Beispielen explizit gezeigt. So kann die Verschränkung von vielen, in einem optischen Gitter gefangenen Teilchen mittels Laserspektroskopie gemessen werden. Bei Festkörpern kann dafür die ebenfalls seit langem etablierte Messung der Neutronenstreuung eingesetzt werden.

Aus den Messdaten lässt sich nach der Innsbrucker Methode die Quanten-Fisher-Information ermitteln, die als verlässlicher Indikator für die Verschränkung von Vielteilchensystemen gilt. Sie ergibt sich aus der Empfindlichkeit eines dynamischen Systems, die durch den Vergleich einzelner Messungen bestimmt werden kann. „Wenn ich zum Beispiel eine Probe durch ein zeitlich veränderliches Magnetfeld bewege, kann ich aus den Messdaten ermitteln, wie empfindlich diese Probe auf das Magnetfeld reagiert und erhalte über unsere Methode dann ein Maß für die interne Verschränkung“, erklärt Philipp Hauke.

Vielfältige Anwendungen

Quantenmetrologie, also auf quantenmechanischen Eigenschaften basierende Messmethoden, sind ein wichtiges Anwendungsgebiet dieser Methode. Denn nun lassen sich die Quanteneigenschaften makroskopischer Messsonden einfacher charakterisieren. Aber auch für Quantensimulationen, mit der Quanteneigenschaften in physikalischen Systemen nachgebildet werden, ist Verschränkung eine zentrale Ressource. Auch hier eröffnet das Innsbrucker Verfahren neue Perspektiven. Und in der Festkörperphysik könnte es dazu dienen, die Rolle quantenmechanischer Verschränkung bei komplexen Phasenübergängen zu untersuchen.

Finanziell unterstützt wurden diese Forschungen unter anderem vom österreichischen Wissenschaftsfonds FWF und dem Europäischen Forschungsrat ERC.

Publikation: Measuring multipartite entanglement via dynamic susceptibilities. Philipp Hauke, Markus Heyl, Luca Tagliacozzo, Peter Zoller. Advanced Online Publication. Nature Physics, am 21.3.2016
DOI: 10.1038/nphys3700

Rückfragehinweis:
Philipp Hauke
Institut für Theoretische Physik
Universität Innsbruck
Tel.: +43 512 507 4787
E-Mail: philipp.hauke@uibk.ac.at

Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507-32022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://www.uibk.ac.at/th-physik/qo/ - Quantum Optics Theory Group, Universität Innsbruck

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Was die Tiefsee über die Sterne verrät
18.12.2018 | Technische Universität Berlin

nachricht Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
17.12.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo

18.12.2018 | Biowissenschaften Chemie

Notsignal im Zellkern – neuartiger Mechanismus der Zellzykluskontrolle

18.12.2018 | Biowissenschaften Chemie

Neue Methode für sichere Brücken

18.12.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics