Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensensor für Lichtteilchen

03.05.2019

Ein Photodetektor wandelt Licht in ein elektrisches Signal um, das Licht geht dabei verloren. Nun haben Forscher um Tracy Northup an der Universität Innsbruck einen Quantensensor gebaut, mit dem Lichtteilchen zerstörungsfrei gemessen werden können. Mit ihm lassen sich Quanteneigenschaften von Licht weiter untersuchen.

Eigentlich forscht die US-Amerikanerin Tracy Northup an der Universität Innsbruck an der Entwicklung des Quanteninternets. Sie baut Schnittstellen, mit denen Quanteninformation von Materie auf Licht und umgekehrt übertragen werden kann.


Ein Ion zwischen zwei Hohlspiegel dient als Quantensensor für Lichtteilchen.

Klemens Schüppert

Über diese Schnittstellen sollen in Zukunft Quantencomputer auf der ganzen Welt über Glasfaserleitungen miteinander kommunizieren können. Bei ihren Forschungen hat Northup mit ihrem Team am Institut für Experimentalphysik nun eine Methode vorgeführt, mit der sichtbares Licht zerstörungsfrei gemessen werden kann.

Die Entwicklung schließt an Arbeiten von Serge Haroche an, der in den 1990er-Jahren mit Hilfe von neutralen Atomen die Quanteneigenschaften von Mikrowellenfeldern charakterisiert hat und dafür 2012 mit dem Physik-Nobelpreis ausgezeichnet wurde.

In Innsbruck platzieren die Physiker um Postdoc Moonjoo Lee und PhD-Student Konstantin Friebe ein elektrisch geladenes Kalziumatom zwischen zwei Hohlspiegeln, durch die sichtbares Laserlicht geleitet wird. „Das Ion nimmt dabei nur schwachen Einfluss auf das Licht“, erläutert Tracy Northup.

„Über Quantenmessungen am Ion können wir statistische Aussagen über die Zahl der Lichtteilchen in der Kammer treffen.“ Unterstützung bei der Interpretation der Messergebnisse erhielten die Physiker durch die Arbeitsgruppe um den Innsbrucker Quantenoptiker Helmut Ritsch vom Institut für Theoretische Physik.

„Man kann hier von einem Quantensensor für Lichtteilchen sprechen“, resümiert Northup, die seit 2017 eine Ingeborg-Hochmair-Professur an der Universität Innsbruck hält. Eine mögliche Anwendung des neuen Verfahrens könnte die Erzeugung von speziellen Lichtfeldern sein, indem die Messergebnisse über eine Feedback-Schleife wieder in das System eingespeist und so die gewünschten Zustände hergestellt werden.

In der aktuellen Arbeit im Fachmagazin Physical Review Letters haben sich die Forscher auf klassische Zustände beschränkt. In Zukunft wären mit dieser Methode auch Messungen von Quantenzuständen des Lichts denkbar. Finanziell unterstützt wurde die Arbeit unter anderem vom österreichischen Wissenschaftsfonds FWF und der Europäischen Union.

Wissenschaftliche Ansprechpartner:

Tracy Northup
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507 52463
E-Mail: tracy.northup@uibk.ac.at
Web: https://quantumoptics.at/

Originalpublikation:

Ion-based nondestructive sensor for cavity photon numbers. Moonjoo Lee, Konstantin Friebe, Dario A. Fioretto, Klemens Schüppert, Florian R. Ong, David Plankensteiner, Valentin Torggler, Helmut Ritsch, Rainer Blatt, and Tracy E. Northup. Phys. Rev. Lett. 122, 153603 https://doi.org/10.1103/PhysRevLett.122.153603

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at/

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bis zu 30 Prozent mehr Kapazität für Lithium-Ionen-Akkus

Durch Untersuchungen struktureller Veränderungen während der Synthese von Kathodenmaterialen für zukünftige Hochenergie-Lithium-Ionen-Akkus haben Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und kooperierender Einrichtungen neue und wesentliche Erkenntnisse über Degradationsmechanismen gewonnen. Diese könnten zur Entwicklung von Akkus mit deutlich erhöhter Kapazität beitragen, die etwa bei Elektrofahrzeugen eine größere Reichweite möglich machen. Über die Ergebnisse berichtet das Team in der Zeitschrift Nature Communications. (DOI 10.1038/s41467-019-13240-z)

Ein Durchbruch der Elektromobilität wird bislang unter anderem durch ungenügende Reichweiten der Fahrzeuge behindert. Helfen könnten Lithium-Ionen-Akkus mit...

Im Focus: Neue Klimadaten dank kompaktem Alexandritlaser

Höhere Atmosphärenschichten werden für Klimaforscher immer interessanter. Bereiche oberhalb von 40 km sind allerdings nur mit Höhenforschungsraketen direkt zugänglich. Ein LIDAR-System (Light Detection and Ranging) mit einem diodengepumpten Alexandritlaser schafft jetzt neue Möglichkeiten. Wissenschaftler des Leibniz-Instituts für Atmosphärenphysik (IAP) und des Fraunhofer-Instituts für Lasertechnik ILT entwickeln ein System, das leicht zu transportieren ist und autark arbeitet. Damit kann in Zukunft ein LIDAR-Netzwerk kontinuierlich und weiträumig Daten aus der Atmosphäre liefern.

Der Klimawandel ist in diesen Tagen ein heißes Thema. Eine wichtige wissenschaftliche Grundlage zum Verständnis der Phänomene sind valide Modelle zur...

Im Focus: Auxetische Membranen - Paradoxes Ersatzgewebe für die Medizin

Ein Material, das dicker wird, wenn man daran zieht, scheint den Gesetzen der Physik zu widersprechen. Der sogenannte auxetische Effekt, der auch in der Natur vorkommt, ist jedoch für eine Vielzahl von Anwendungen interessant. Eine neue, vor kurzem im Fachblatt «Nature Communications» veröffentlichte Studie der Empa zeigt nun, wie sich das erstaunliche Materialverhalten weiter steigern lässt – und sogar für die Behandlung von Verletzungen und Gewebeschäden genutzt werden kann.

Die Natur macht es vor: Ein Kälbchen, das am Euter der Mutterkuh Milch saugt, nutzt eine faszinierende physikalische Eigenschaft der Kuhzitze: Diese besteht...

Im Focus: Meteoritengestein ist "bessere Diät"

Archaeon kann Meteoritengestein aufnehmen – und sich davon ernähren

Das Archaeon Metallosphaera sedula kann außerirdisches Material aufnehmen und verarbeiten. Das zeigt ein internationales Team um Astrobiologin Tetyana...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

Intelligente Transportbehälter als Basis für neue Services der Intralogistik

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was gehört auf die Trendliste für 2020?

05.12.2019 | Unternehmensmeldung

Bis zu 30 Prozent mehr Kapazität für Lithium-Ionen-Akkus

05.12.2019 | Energie und Elektrotechnik

Schweizer Weltraumteleskop CHEOPS: Raketenstart voraussichtlich am 17. Dezember 2019

05.12.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics