Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenmaterie ohne Gedächtnisverlust

06.07.2016

MPQ Wissenschaftler beobachten Anzeichen für Vielteilchen-Lokalisation in einem geschlossenen Quantensystem.

Wenn gewöhnliche Vielteilchensysteme ins Gleichgewicht kommen, verlieren sie sämtliche Informationen über ihren ursprünglichen Zustand. Diese Erfahrung machen wir zum Beispiel jeden Morgen, wenn wir uns Milch in den Kaffee gießen. Milch und Kaffee mischen sich so perfekt, dass es sich nicht mehr sagen lässt, wie genau diese beiden Flüssigkeiten zusammen gekommen sind. Das gleiche Verhalten legen auch fast alle Quantensysteme an den Tag.


Das Titelbild der Zeitschrift Science zeigt eine künstlerische Darstellung des Experimentes. Sie illustriert das Fortbestehen der Dichtestufe einer atomaren Dichteverteilung in einem optischen Gitter

Science Cover Vol 352, Issue 6293, 24. Juni 2016

Allerdings wurde vor kurzem ein neues Phänomen vorher gesagt, die sogenannte „Vielteilchen-Lokalisation“. Sie erlaubt es gut isolierten Quantensystemen, ihren anfänglichen Zustand auf ewig im Gedächtnis zu behalten.

Nun hat ein Wissenschaftlerteam um Dr. Christian Groß und Prof. Immanuel Bloch (Direktor am MPQ und Lehrstuhl für Quantenoptik an der LMU München) in Zusammenarbeit mit David Huse (Princeton University) starke Hinweise für das Auftreten dieses Phänomens in einem zweidimensionalen Quantensystem aus kalten Rubidiumatomen erhalten (Science, 24. Juni 2016).

Die Wissenschaftler beobachteten, dass sich oberhalb eines bestimmten Grads an Unordnung, die dem System zu Anfang aufgeprägt wurde, ein Gleichgewichtszustand einstellte, der noch detaillierte mikroskopisch Informationen über seine Vergangenheit enthielt.

„Wir waren in der Lage, den Übergang von einem thermischen Gleichgewichtszustand in eine Vielteilchen-lokalisierte Phase zu verfolgen“, betont Dr. Christian Groß. „Das ist die erste derartige Beobachtung in einem Bereich, der mit modernen Simulationstechniken auf klassischen Computern nicht zugänglich ist.“ Das Experiment ist nicht nur von grundsätzlichem Interesse, sondern könnte auch zu neuen Wegen führen, Quanteninformation zu speichern.

Motiviert durch die fundamentale Fragestellung, wie sich Teilchen, die miteinander in Wechselwirkung stehen, in einem ungeordneten System verhalten, entdeckte der amerikanische Physiker Philip Warren Anderson in den 50er Jahren ein Phänomen, dass heute „Anderson Lokalisation“ genannt wird. Diese besagt, dass die Unordnung jegliche Bewegung und damit auch jeglichen Transport verhindert, wenn keine Wechselwirkung zwischen den Teilchen stattfindet.

Doch was geschieht, wenn Unordnung und Wechselwirkung zusammentreffen? Wird es aufgrund der Wechselwirkung doch zu einem Transport von Teilchen kommen, oder wird die Lokalisation auch bei hohen Energien fortbestehen? Bislang gibt es kein theoretisches Modell, das verlässlich vorhersagen könnte, wie sich ein geschlossenes Quantensystem unter diesen Bedingungen entwickelt, wenngleich die Möglichkeit der Lokalisierung theoretisch erwogen wurde.

Um diese Fragen experimentell untersuchen zu können, müssen strenge Anforderungen an die Kontrollierbarkeit und Abschirmung des Systems erfüllt sein. In dem hier beschriebenen Experiment werden extrem kalte Rubidiumatome in ein optisches Gitter geladen, eine Aneinanderreihung mikroskopisch kleiner Lichtfallen, die durch Interferenz mehrerer Laserstrahlen entsteht. Auf das atomare Ensemble wird ein zufällig mit einem Computer erzeugtes Lichtmuster projiziert.

Dies bewirkt, dass die Tiefe der kleinen Lichtfallen nun von Gitterplatz zu Gitterplatz variiert, was einer gewissen Unordnung des Systems entspricht. Die Gruppe von Prof. Bloch hat ihre technischen Methoden mittlerweile so weit entwickelt, dass sie die Position der Atome und die Wechselwirkung zwischen ihnen fast nach Belieben steuern kann. Mit einem hochauflösenden Mikroskop kann der Ort jedes Atoms über das von ihm ausgesandte Fluoreszenzlicht mit höchster Genauigkeit bestimmt werden. Außerdem kann die anfängliche Dichteverteilung genau eingestellt und ihre weitere Entwicklung für verschiedene Zeitintervalle gemessen werden.

Mit diesen Werkzeugen kann das nicht-thermische Verhalten des atomaren Systems mit einer konzeptionell recht einfachen Methode getestet werden. Jeder thermische Gleichgewichtszustand in einem geschlossenen System spiegelt die Symmetrie seines Behälters wider. So bedeckt Wasser, das in eine runde Schüssel geschüttet wird, unmittelbar den ganzen Boden des Gefäßes. Ganz analog erzeugen die Wissenschaftler in dem atomaren Ensemble zu Beginn eine „Dichtestufe“, indem sie die Atome in der einen Hälfte des optischen Gitters mit Laserstrahlung „wegpusten“.

Dann beobachten sie, wie sich die übrig gebliebenen Teilchen in der leeren Hälfte ausbreiten. Solange die durch das Lichtmuster aufgeprägte Unordnung relativ klein ist, vergeht die Dichtestufe schnell, und die anfänglich leere bzw. gefüllte Hälfte gleichen sich immer mehr an. Anders, wenn die aufgeprägte Unordnung größer ist: Dann bleiben Spuren der anfänglichen Unregelmäßigkeiten bestehen, d.h., das System geht auch nach langen Zeitspannen in keinen thermischen Zustand über.

„Wir beobachten, dass dieses nicht-thermische Verhalten oberhalb eines kritischen Wertes für die Unordnung sprunghaft einsetzt“, sagt Christian Groß. „Dieses Fehlen von Thermalisierung ist vor allem deswegen bemerkenswert, weil es in einem System aus interagierenden Teilchen auftritt und sogar bei den hohen Energien, die wir in unserem Experiment testen, bestehen bleibt.“

Die Wissenschaftler deuten diese Beobachtung als den Übergang in eine neue Phase des Systems, die Vielteilchen-Lokalisation. Sie ist auf der einen Seite von grundlegendem Interesse, weil sie nicht durch klassische statistische Mechanik beschrieben werden kann. Auf der anderen Seite könnte das Fortbestehen der Information über den Anfangszustand als Quelle für Quanteninformationstechnologien genutzt werden. „Wir sollten dabei hervorheben, dass wir diese Ergebnisse für eine Systemgröße erzielen, die weit über numerisch zugängliche Skalen hinaus geht“, sagt Jae-yoon Choi, Postdoc am Experiment. Olivia Meyer-Streng

Originalveröffentlichung:

Jae-yoon Choi, Sebastian Hild, Johannes Zeiher, Peter Schauß, Antonio Rubio-Abadal, Tarik Yefsah, Vedika Khemani, David A. Huse, Immanuel Bloch, and Christian Groß
Exploring the many-body localization transition in two dimensions
Science, 24 June 2016, DOI: 10.1126/science.aaf8834 (http://science.sciencemag.org/content/352/6293/1547)

Kontakt:

Dr. Christian Groß
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 32 905 - 713
E-Mail: christian.gross@mpq.mpg.de

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weltweit erste Herstellung des Materials Aluminiumscandiumnitrid per MOCVD
22.10.2019 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

nachricht Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie
22.10.2019 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungen

Serienfertigung von XXL-Produkten: Expertentreffen in Hannover

22.10.2019 | Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungsnachrichten

Studenten entwickeln einen Koffer, der automatisch auf Schritt und Tritt folgt

22.10.2019 | Innovative Produkte

Chemikern der Universität Münster gelingt Herstellung neuartiger Lewis-Supersäuren auf Phosphor-Basis

22.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics