Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenkommunikation in freier Luft nimmt Fahrt auf

24.07.2017

Mit einer Quantenverbindung quer über die Dächer von Wien konnten Forscher/innen der Österreichischen Akademie der Wissenschaften erstmals Quanteninformation mit mehreren Eigenschaften durch die Atmosphäre hindurch übertragen. Das berichten sie nun im Fachjournal „Nature Communications“. Das Experiment könnte neue Geschwindigkeitsrekorde in der Quantenkommunikation möglich machen.

Quantenphysikalisch verschränkte Teilchen zeichnen sich dadurch aus, dass sie eine Vielzahl von Eigenschaften miteinander teilen und jede Messung an einem der Teilchen augenblicklich den Zustand des anderen Teilchens festlegt.


Sendestation mit rotem Justagelaser im Hedy Lamarr Teleskop am Dach des Instituts für Quantenoptik und Quanteninformation der ÖAW mit Blick in Richtung der Empfangsstation im Norden Wiens.

Österreichische Akademie der Wissenschaften


Quantenoptischer Aufbau zur Erzeugung verschränkter Photonen am Institut für Quantenoptik und Quanteninformation der ÖAW.

Österreichische Akademie der Wissenschaften

Während sich in der Vergangenheit Experimente zur Verschränkung zumeist auf eine dieser Eigenschaften konzentrierten, hätte die Ausweitung der Untersuchung auf gleich mehrere Eigenschaften große Vorteile für die Quantenkommunikation: Geschwindigkeit und Effizienz der Informationsübertragung könnten dadurch gesteigert werden.

„Hyperentanglement“ zum ersten Mal außerhalb des Labors getestet

Dieser Ansatz wird daher in der Quantenforschung seit Längerem intensiv verfolgt. Er hat jedoch eine Schwachstelle: Das sogenannte „Hyperentanglement“ – die Verschränkung von Teilchen über mehrere Eigenschaften – konnte bisher nur in Laborexperimenten nachgewiesen werden. Für Verbindungen über größere Distanzen hinweg, ist eine Übertragung durch die freie Luft wesentlich. Diese könnte aber durch Turbulenzen in der Atmosphäre verfälscht werden, so die Befürchtung in der Quantenphysik.

Eine Befürchtung, die Forscher/innen des Wiener Instituts für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften (ÖAW) rund um Forschungsgruppenleiter Rupert Ursin nun entkräften konnten. Wie sie in einer neuen Publikation im Fachjournal „Nature Communications“ berichten, gelang es ihnen erstmals, Quanteninformation anhand zweier Eigenschaften von verschränkten Lichtteilchen – der Schwingungsrichtung und dem Erzeugungszeitpunkt – durch den Luftraum im Wiener Stadtgebiet zu übertragen und zu messen.

Künftig schnellere Quantenkommunikation möglich

Mithilfe des Hedy Lamarr Teleskops am Dach des ÖAW-Instituts in der Wiener Boltzmanngasse sowie einer Empfängerstation an der Universität für Bodenkultur Wien wurden diese beiden Eigenschaften von verschränkten Lichtteilchen trotz atmosphärischer Turbulenzen am jeweils anderen Ende der Quantenverbindung erfolgreich nachgewiesen.

„Experimente mit der Zeitverschränkung sind bisher nur in Glasfasern gelungen. Wir konnten nun, zusätzlich zu der vielfach untersuchten Schwingungsrichtung der Teilchen, auch den Zeitpunkt der Erzeugung der Teilchen als weitere Eigenschaft der Teilchen erstmals in Freiluft übertragen“, bestätigen die Erstautoren Fabian Steinlechner und Sebastian Ecker das Gelingen des Experiments.

Was diese erstmalige Untersuchung des „Hyperentanglement“ in freier Atmosphäre für die weitere Entwicklung der Quantenkommunikation bedeutet, erklärt ÖAW-Forscher Rupert Ursin: „Hyperentanglement erlaubt es Lichtteilchen, Information die in unterschiedlichen Eigenschaften kodiert ist, gleichzeitig auszutauschen. Das könnte die Geschwindigkeit der Datenübertragung in der Quantenkommunikation erheblich beschleunigen.“

Denn durch die Verschränkung gleich mehrerer Eigenschaften lässt sich die Anzahl der für die Übertragung von Information benötigten Teilchen drastisch reduzieren. Das macht die Quantenverbindungen schneller und effizienter – und damit etwa auch künftige Experimente zur Quantenkommunikation über Satelliten noch vielversprechender.

Publikation:

"Distribution of high-dimensional entanglement via an intra-city free-space link", Fabian Steinlechner, Sebastian Ecker, Matthias Fink, Bo Liu, Jessica Bavaresco, Marcus Huber, Thomas Scheidl, Rupert Ursin. Nature Communications, 2017.
DOI:10.1038/NCOMMS15971

Wissenschaftlicher Kontakt:

Fabian Steinlechner
Institut für Quantenoptik und Quanteninformation Wien
Österreichische Akademie der Wissenschaften
Boltzmanngasse 3, 1090 Wien
T +43 1 4277-29558
fabian.steinlechner@oeaw.ac.at

Weitere Informationen:

https://www.oeaw.ac.at/pr

Dipl.-Soz. Sven Hartwig | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf die Nähe kommt es an: Wie Kristall den Widerstand von Graphen beeinflusst
28.01.2020 | Georg-August-Universität Göttingen

nachricht Wie man ein Bild von einem Lichtpuls macht
27.01.2020 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lichtgetriebene Nanomotoren - Erfolgreich gekoppelt

28.01.2020 | Biowissenschaften Chemie

Warum Gesunde für Kranke so wichtig sind! – Vergleichsstudie geht Fibromyalgie-Syndrom auf den Grund

28.01.2020 | Biowissenschaften Chemie

Kiss and Run: Wie Zellen ihre Bestandteile trennen und recyceln

28.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics