Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker gelingt erstmalig Vorstoß in höhere Dimensionen

19.02.2019

Wie die renommierte Fachzeitschrift Nature jüngst berichtet, ist es einer Arbeitsgruppe um den Rostocker Physiker Professor Alexander Szameit experimentell gelungen, das außergewöhnliche Verhalten eines topologischen Isolators in 4-Dimensionen im realen 3-dimensionalen Raum nachzuweisen.

Es gibt scheinbar unlösbare Aufgaben. Etwa, wenn ein hoher Berg den Weg versperrt und man nicht für den Aufstieg gerüstet ist. Wenn aber ein Tunnel im Berg auftauchte, sieht das schon anders aus.


Ein „gewöhnlicher“ topologische Isolator leitet Licht entlang seiner Oberfläche (Copyright: Universität Rostock / Steffen Weimann).


Ein topologischer Isolator der vierten Dimension leitet Licht auch im Innern. In der 3-dimensionalen Darstellung erscheint das ungeordnet (Copyright: Universität Rostock / Steffen Weimann).

Stoßen Mathematiker auf unlösbare Gleichungen, weichen sie zum Beispiel in höhere Dimensionen aus, lösen dort die Gleichung und kehren wieder in den uns vertrauten Zahlenraum zurück. Für Physiker ist dieser Weg bislang verschlossen.

Drei Dimensionen hat unser Raum und keine mehr. Tatsächlich ist es Physikern der Universität Rostock, der University of Pennsylvania (USA) und dem Technion in Haifa (Israel) jetzt gelungen, nicht nur in höhere Dimensionen vorzustoßen, sondern auch die dort gefundenen Lösungen auf unseren 3-dimensionalen Erfahrungsraum anzuwenden.

Professor Alexander Szameit, Quantenoptiker an der Universität Rostock, und sein Forschungsteam widmen sich der Erforschung topologischer Isolatoren in einem optischen Modell mittel Laserlicht.

Topologische Isolatoren sind Materialien, die aufgrund ihrer geometrischen Gestalt nur an der Oberfläche leitende Eigenschaft zeigen. Das gilt für den elektrischen Strom genauso, wie für analoge Systeme, beispielsweise die Lichtleitung.

Alexander Szameit erläutert: „Die topologischen Isolatoren für Licht sind selbst schon ungewöhnlich genug. Bekannt ist, dass sie Licht im Innern nicht durchlassen, es dafür aber entlang der Oberfläche extrem gut transportieren. Dieses Verhalten ist gegenüber Störungen sehr stabil. Man spricht von einer Art optischer Supraleitung, bei der Licht ungehindert entlang beliebiger Bahnen gelenkt werden kann, beispielsweise auch um Ecken und Kanten.“

Wie kommt nun aber die vierte Dimension ist Spiel? „Sollte es eine vierte Raumdimension geben, dann würden diese topologischen Isolatoren nicht nur auf der Oberfläche Licht leiten, sondern auch im Innern. Soweit jedenfalls die Theorie“, erklärt der Quantenoptiker Szameit. Denn all dies „passiere“ nur in der vierten Dimension des Raumes.

Der entscheidende Schritt zurück in die uns vertraute Welt der drei Dimensionen Höhe, Breite und Länge gelinge durch die Erfindung einer synthetischen, künstlichen Dimension.

„Diese ersetzt die eigentlich benötigte vierte Raumdimension in unserer Welt und besteht tatsächlich in einer scheinbar unregelmäßigen Anordnung der Lichtleiter“, so Szameit. –  Eine unregelmäßige Anordnung, die dennoch ein regelmäßiges Verhalten der Lichtleitung in höheren Dimensionen aufweist?

Überraschenderweise ist es genau diese Anordnung im realen Raum, die das Verhalten eines vierdimensionalen Materials zeigt. Und das eröffnet ungeahnten Möglichkeiten, wenn man an die schnelle Informationsübertragung mittels Lichtleitern denkt. Ist das ganze Material lichtleitend und nicht nur die Oberfläche, lassen sich um Größenordnungen mehr Informationen übertragen.

Auch wenn dies noch ein Stück Zukunftsmusik ist, sind sich die Physiker um Alexander Szameit am Institut für Physik der Universität Rostock sicher, dass sie durch den Vorstoß in neue synthetische Dimensionen im Verständnis von topologischen Isolatoren ein gutes Stück weitergekommen sind.

Abb1: Ein „gewöhnlicher“ topologische Isolator leitet Licht entlang seiner Oberfläche (Copyright: Universität Rostock / Steffen Weimann).

Abb2: Ein topologischer Isolator der vierten Dimension leitet Licht auch im Innern. In der 3-dimensionalen Darstellung erscheint das ungeordnet (Copyright: Universität Rostock / Steffen Weimann).

Kontakt:
Prof. Dr. Alexander Szameit
Institut für Physik
Mathematisch-Naturwissenschaftliche Fakultät (MNF)
Universität Rostock
Tel.: +49 381 498-6790
E-Mail: alexander.szameit@uni-rostock.de
https://www.optics.physik.uni-rostock.de

Prof. Dr. Alexander Szameit | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Mikroboote
21.03.2019 | Max-Planck-Institut für Polymerforschung

nachricht Die Trennung von Gas und Flüssigkeit – im Weltraum eine Herausforderung
20.03.2019 | Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Im Focus: Wichtiger Mechanismus der Antigenpräsentation in Wächterzellen des Immunsystems enträtselt

TWINCORE-Forscher entschlüsseln, wie der Transport von Antigenfragmenten auf die Oberfläche von Immunzellen des Menschen reguliert wird

Dendritische Zellen sind die Wächter unserer Immunabwehr. Sie lauern fremden Eindringlingen auf, schlucken sie, zerlegen sie in Bruchstücke und präsentieren...

Im Focus: Selbstheilender Lack aus Maisstärke lässt kleine Kratzer durch Wärme verschwinden

Ein neuer Lack aus Maisstärke ist wegen der besonderen Anordnung seiner Moleküle in der Lage, durch Wärme kleine Kratzer von selbst zu reparieren: Die Vernetzung über ringförmige Moleküle macht das Material beweglich, sodass es die Kratzer ausgleicht und diese wieder verschwinden.

Oberflächliche Mikrokratzer in der Autokarosserie oder auf anderen Hochglanzoberflächen sind harmlos, aber ärgerlich. Gerade im Luxussegment zeichnen sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magnetische Mikroboote

21.03.2019 | Physik Astronomie

Protein BRCA1 als Stress-Coach

21.03.2019 | Biowissenschaften Chemie

Möglicher Ur-Stoffwechsel in Bakterien entdeckt

21.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics