Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Phänomen im Video: Laufende stehende Welle erzeugt

12.08.2019

Und sie bewegen sich doch: Ein internationales Wissenschaftlerteam rund um Physiker des Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) hat ein neuartiges Phänomen beobachtet: Sie haben stehende Wellen erzeugt – die doch laufen. Ihre Entdeckung haben die Forscher unter anderem als Videos im Fachmagazin Physical Review B veröffentlicht.

Eine Welle besteht aus Bäuchen und Knoten. Stellt man sich das an einem Seil vor, sind die Bäuche die Wölbungen nach unten oder oben (Berge und Täler). Knoten nennt man die Punkte des Seils, die genau zwischen Berg und Tal liegen. Bei einer stehenden Welle bleiben Knoten immer an derselben Stelle, ein Bauch schwingt lediglich von unten nach oben. Eine Bewegung nach links oder rechts gibt es nicht.


Ausschnitt aus einem Video, das die stehende Welle mit laufenden Eigenschaften zeigt. Weiß: Knoten und Bäuche der stehenden Welle, die immer wieder durchlaufen werden. Grün: Momentaufnahme der Welle.

UDE / B. Zingsem (AG Farle)

Im Gegensatz dazu gibt es laufende Wellen: Versetzt man ein Seil kräftig an einem Ende in Schwingung, erzeugt man eine Welle, die es bis zum Ende durchläuft.

Benjamin Zingsem aus der Arbeitsgruppe von UDE-Professor Michael Farle hat nun erstmals das scheinbare Paradoxon beobachtet: Dazu hat er mit einem magnetischen Material gearbeitet, in dem Dzyaloshinskii-Moriya-Wechselwirkung auftritt: Alle Dipole – die winzigen Magnete, aus denen das Material besteht – sind wie Schraubenwindungen in einer bestimmten Richtung leicht zueinander verdreht. Die Physik nennt so etwas einen chiralen Magneten.

Wird das System nun resonant zum Schwingen angeregt, bildet sich eine stehende Welle mit laufenden Eigenschaften aus. Diese besitzt ebenfalls stationäre Knoten und Bäuche, aber gleichzeitig erzeugt eine kontinuierliche Phasenverschiebung den Eindruck einer laufenden Welle.

„Ich musste es mir lange ansehen, bis ich in Worte fassen konnte, was das ist. Wirklich begriffen habe ich es erst, nachdem ich ein Video davon gesehen hatte“, so Zingsem. Denn stehende Wellen sind ein grundlegendes Phänomen der Physik, das man bisher verstanden glaubte.

Der Effekt offenbart in solchen Systemen bisher unbekannte Transporteigenschaften. So können über ihre magnetischen Schwingungen zum Beispiel Informationen gespeichert, übertragen und verarbeitet werden, ohne dass dabei – wie in herkömmlichen Systemen – Wärme anfällt.

Für das Projekt hat Zingsem unter anderem mit Kollegen der University of Colorado (USA) und der University of Glasgow (UK) zusammengearbeitet.

Redaktion: Birte Vierjahn, 0203 37-9 8176, birte.vierjahn@uni-due.de

Wissenschaftliche Ansprechpartner:

Benjamin Zingsem, Fakultät für Physik und Forschungszentrum Jülich, 0203 37-9 4411, benjamin.zingsem@uni-due.de

Originalpublikation:

B.W. Zingsem, M. Farle, R.L. Stamps, and R.E. Camley, Unusual nature of confined modes in a chiral system: Directional transport in standing waves Phys. Rev. B,99:214429, Jun 2019. https://doi.org/10.1103/PhysRevB.99.214429

Weitere Informationen:

Das Phänomen im Video: http://udue.de/standingWaveComparison

Birte Vierjahn | Universität Duisburg-Essen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht TU Dortmund erstellt hochgenaues 3D-Modell vom Rover-Landeplatz auf dem Mars
18.09.2019 | Technische Universität Dortmund

nachricht Rostock Scientists Achieve Breakthrough in Quantum Physics
18.09.2019 | Universität Rostock

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics