Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Phänomen im Video: Laufende stehende Welle erzeugt

12.08.2019

Und sie bewegen sich doch: Ein internationales Wissenschaftlerteam rund um Physiker des Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) hat ein neuartiges Phänomen beobachtet: Sie haben stehende Wellen erzeugt – die doch laufen. Ihre Entdeckung haben die Forscher unter anderem als Videos im Fachmagazin Physical Review B veröffentlicht.

Eine Welle besteht aus Bäuchen und Knoten. Stellt man sich das an einem Seil vor, sind die Bäuche die Wölbungen nach unten oder oben (Berge und Täler). Knoten nennt man die Punkte des Seils, die genau zwischen Berg und Tal liegen. Bei einer stehenden Welle bleiben Knoten immer an derselben Stelle, ein Bauch schwingt lediglich von unten nach oben. Eine Bewegung nach links oder rechts gibt es nicht.


Ausschnitt aus einem Video, das die stehende Welle mit laufenden Eigenschaften zeigt. Weiß: Knoten und Bäuche der stehenden Welle, die immer wieder durchlaufen werden. Grün: Momentaufnahme der Welle.

UDE / B. Zingsem (AG Farle)

Im Gegensatz dazu gibt es laufende Wellen: Versetzt man ein Seil kräftig an einem Ende in Schwingung, erzeugt man eine Welle, die es bis zum Ende durchläuft.

Benjamin Zingsem aus der Arbeitsgruppe von UDE-Professor Michael Farle hat nun erstmals das scheinbare Paradoxon beobachtet: Dazu hat er mit einem magnetischen Material gearbeitet, in dem Dzyaloshinskii-Moriya-Wechselwirkung auftritt: Alle Dipole – die winzigen Magnete, aus denen das Material besteht – sind wie Schraubenwindungen in einer bestimmten Richtung leicht zueinander verdreht. Die Physik nennt so etwas einen chiralen Magneten.

Wird das System nun resonant zum Schwingen angeregt, bildet sich eine stehende Welle mit laufenden Eigenschaften aus. Diese besitzt ebenfalls stationäre Knoten und Bäuche, aber gleichzeitig erzeugt eine kontinuierliche Phasenverschiebung den Eindruck einer laufenden Welle.

„Ich musste es mir lange ansehen, bis ich in Worte fassen konnte, was das ist. Wirklich begriffen habe ich es erst, nachdem ich ein Video davon gesehen hatte“, so Zingsem. Denn stehende Wellen sind ein grundlegendes Phänomen der Physik, das man bisher verstanden glaubte.

Der Effekt offenbart in solchen Systemen bisher unbekannte Transporteigenschaften. So können über ihre magnetischen Schwingungen zum Beispiel Informationen gespeichert, übertragen und verarbeitet werden, ohne dass dabei – wie in herkömmlichen Systemen – Wärme anfällt.

Für das Projekt hat Zingsem unter anderem mit Kollegen der University of Colorado (USA) und der University of Glasgow (UK) zusammengearbeitet.

Redaktion: Birte Vierjahn, 0203 37-9 8176, birte.vierjahn@uni-due.de

Wissenschaftliche Ansprechpartner:

Benjamin Zingsem, Fakultät für Physik und Forschungszentrum Jülich, 0203 37-9 4411, benjamin.zingsem@uni-due.de

Originalpublikation:

B.W. Zingsem, M. Farle, R.L. Stamps, and R.E. Camley, Unusual nature of confined modes in a chiral system: Directional transport in standing waves Phys. Rev. B,99:214429, Jun 2019. https://doi.org/10.1103/PhysRevB.99.214429

Weitere Informationen:

Das Phänomen im Video: http://udue.de/standingWaveComparison

Birte Vierjahn | Universität Duisburg-Essen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt
03.07.2020 | Universität Wien

nachricht Physiker blicken mit Pikoskope in das Innere der atomaren Materie
01.07.2020 | Universität Rostock

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics