Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Orientierungslauf im Mikrokosmos

24.05.2017

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner. Daher soll er in nicht allzu ferner Zukunft Probleme lösen können, die für klassische Supercomputer praktisch unlösbar sind. Physiker sprechen auch von einer „quantum computational supremacy“.


Elektronenmikroskopische Aufnahme eines so genannten Mikrotürmchens mit integriertem Quantenpunkt, das einzelne Photonen aussenden kann.

Foto: Technische Physik, Uni Würzburg

Doch noch steht der Nachweis für diese Überlegenheit des Quantencomputers aus: Effekte aus der Quantenmechanik für Kalkulationen zu nutzen, gestaltet sich schwierig; die bisherigen Prototypen konnten daher lediglich sehr einfache Probleme lösen.

Forscher der Universität Würzburg und der chinesischen Universität für Wissenschaft und Technologie in Hefei und Shanghai schicken sich an, das zu ändern. Ihre Studien sind jetzt in den Fachzeitschriften Nature Photonics und Physical Review Letters erschienen.

Die Wissenschaftler haben eine spezielle Variante eines Quantenrechners gebaut, die auf eine einzige Aufgabe spezialisiert ist. „Es handelt sich also nicht um einen wirklichen universellen Quantencomputer, sondern gewissermaßen um einen kleineren Bruder, der nur ein spezielles Problem lösen kann“, erklärt Professor Sven Höfling vom Physikalischen Institut der Universität Würzburg.

Ein zentraler Bestandteil dieses Rechners wurde von Höfling und seinen Kollegen Dr. Christian Schneider und Dr. Martin Kamp über Jahre hinweg entwickelt und verbessert – eine so genannte Einzelphotonenquelle. Diese erzeugt auf Knopfdruck einzelne Lichtteilchen (Photonen). Bei einer Glühlampe oder einem Laser kann dagegen nie vorhergesagt werden, wie viele Photonen zu einer bestimmten Zeit abgegeben werden.

Basis vieler quantenoptischer Experimente

Die Würzburger Lichtquelle hat noch einen weiteren Vorteil: Die emittierten Lichtteilchen ähneln einander wie ein Ei dem anderen – sie haben exakt die gleiche Farbe und breiten sich in die gleiche Richtung aus. „Einzelne Photonen wie diese sind eine Grundvoraussetzung für viele quantenoptische Experimente“, betont Höfling.

„Wir haben unsere Methoden in jahrelanger Arbeit so optimiert, dass wir derartige Lichtteilchen inzwischen sehr effizient und zuverlässig erzeugen können.“ In Zahlen: Wenn die Wissenschaftler 100 Mal den Knopf drücken, spuckt ihre Lichtquelle bis zu 74 Mal ein einzelnes Photon aus. Nur ein einziges Mal entstehen irrtümlich zwei Photonen gleichzeitig.

Die Partner aus Hefei und Shanghai schickten die Photonen nun auf eine Art optischen Orientierungslauf: Sie ließen die Lichtteilchen durch ein Material wandern, in dem diese – bildlich gesprochen – in regelmäßigen Abständen auf eine Weggabelung trafen. Sie mussten sich dann stets für den linken oder rechten Pfad entscheiden.

Ihre Situation ähnelte dabei der eines Mannes, der eine Münze in der Hand hält und diese mehrmals hintereinander wirft. Immer wenn sie „Kopf“ zeigt, macht er einen Schritt nach rechts. Liegt dagegen „Zahl“ oben, geht es einen Schritt nach links. Nach zehn Würfen hat sich der Mann wahrscheinlich nicht allzu weit vom Ausgangspunkt entfernt: „Kopf“ und „Zahl“ fallen in etwa gleich häufig. Um zehn Schritte nach rechts zu gehen, müsste er dagegen zehn Mal hintereinander „Kopf“ werfen. Und das kommt eher selten vor.

Quantenspaziergang mit fünf Teilnehmern

Würde man dieses Experiment 1.000 Mal hintereinander durchführen und nach jedem Durchgang den Standort des Mannes notieren, erhielte man daher eine typische Glockenkurve: Sehr häufig endet die Reise irgendwo in der Nähe des Startpunkts. Weit links oder rechts befindet sich der Mann dagegen selten.

Das Experiment nennt sich „Zufallswanderung“, englisch: „random walk“. Das Phänomen ist in vielen Bereichen der Natur zu finden, etwa als Brownsche Molekularbewegung. In der Welt der Quantenphysik gibt es ein Analogon, den „random quantum walk“. Das Ergebnis dieses Quantenspaziergangs lässt sich jedoch wegen der Quanteninterferenz ununterscheidbarer Teilchen viel schwerer vorhersagen – besonders, wenn sich mehrere Teilchen gleichzeitig auf den Weg machen. „Schon ab etwa 20 Photonen stoßen klassische Computer an ihre Grenzen“, erklärt Höfling. „Unsere Partner aus China nutzen daher die einzelnen Photonen in Verbindung mit einem photonischen Schaltkreis für eine Quantensimulation, die das Problem nachbildet.“

In den jetzt publizierten Veröffentlichungen schickten sie bis zu fünf Photonen gleichzeitig auf Reise. Für die Ermittlung der Verteilung benötigten sie mit ihrem Ansatz in etwa so viel Zeit, wie auch die allerersten elektronischen Computer gebraucht hätten. „Wir sind aber optimistisch, dass wir mit unserer Methode prinzipiell auch Simulationen mit 20 oder mehr Photonen durchführen können“, hofft Sven Höfling. „Damit kämen wir in einen Bereich, in dem sich erstmals eine echte Überlegenheit der Quantentechnologie über klassische Rechenmaschinen zeigen könnte, und daran arbeiten wir.“

Hui Wang u.a.: High-efficiency multiphoton boson sampling; Nature Photonics; DOI: 10.1038/nphoton.2017.63.

Yu He u.a.:Time-Bin-Encoded Boson Sampling with a Single-Photon Device; Phys. Rev. Lett. 118, 190501 (2017)

Kontakt

Prof. Dr. Sven Höfling, Lehrstuhl für Technische Physik der Universität Würzburg, T: (0931) 31-83613, E-Mail: sven.hoefling@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superauflösende Mikroskopie - Neue Markierungssonden im Nanomaßstab
21.08.2018 | Ludwig-Maximilians-Universität München

nachricht Quantenverschränkung erstmals mit Licht von Quasaren bestätigt
20.08.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Auf dem Weg zur personalisierten Medizin

21.08.2018 | Biowissenschaften Chemie

In Form gebracht

21.08.2018 | Biowissenschaften Chemie

Superauflösende Mikroskopie - Neue Markierungssonden im Nanomaßstab

21.08.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics