Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optische Linsen, so fein wie ein Haar - 3D Druck ermöglicht kleinste komplexe Mikro-Objektive

28.06.2016

3D Druck hat in den letzten Jahren die Herstellung von komplizierten Formen revolutioniert. Mithilfe von serieller Auftragung, bei der Punkt für Punkt oder Linie für Linie geschrieben wird, könnten auch die komplexesten Bauteile schnell und einfach realisiert werden. Diese Methode steht jetzt auch für optische Bauteile zur Verfügung: Forscher der Universität Stuttgart haben einen Kurzpulslaser in Kombination mit optischem Fotolack benutzt, um optische Linsen herzustellen, die kaum größer sind als ein menschliches Haar.

Dabei wird der Femtosekundenlaser, der eine Pulsdauer von weniger als 100 Femtosekunden besitzt, mithilfe eines Mikroskops in einen flüssigen Fotolack fokussiert, der vorher zum Beispiel auf einem Glasplättchen oder auf einer Glasfaser aufgebracht wurde. Zwei Photonen des roten Laserstrahls mit der Wellenlänge 785 nm werden im Brennpunkt gleichzeitig absorbiert und belichten ihn. Dadurch härtet der Fotolack.


Komplexes 3D gedrucktes Objektiv auf einer optischen Faser neben einer Fliege.

© Universität Stuttgart, 4. Physikalisches Institut


Komplexe Triplett-Linse, hergestellt durch Femtosekunden 3D Druck auf einer Monomoden-Glasfaser.

© Universität Stuttgart, 4. Physikalisches Institut

Der Laserstrahl kann mit einem Scanner oder durch Verfahren des Substrates in alle drei Raumrichtungen die gewünschte Form abfahren, die hergestellt werden soll. Dadurch lassen sich mit einer Submikrometer-Genauigkeit optische Freiformflächen herstellen. Die große Präzision erlaubt es, nicht nur kugelförmige Linsen herzustellen, sondern auch die idealeren Flächen wie Paraboloide oder Asphären höherer Ordnung. Auch mehrlinsige Objektive für Abbildungen in höchster Qualität werden erstmals möglich.

Doktorand Timo Gissibl aus der Arbeitsgruppe von Prof. Harald Giessen am 4. Physikalischen Institut druckte solche Mikroobjektive auch auf Glasfasern. Damit lassen sich ganz neuartige und kleinste flexible Endoskope verwirklichen, die dazu geeignet sind, auch in kleinste Öffnungen des Körpers oder in Maschinen Untersuchungen vorzunehmen. Das Optikdesign, also der Bauplan dazu, stammte im Rahmen einer Zusammenarbeit im Stuttgarter Zentrum für Photonic Engineering (SCoPE) vom Doktoranden Simon Thiele aus der Arbeitsgruppe von Prof. Alois Herkommer am Institut für Technische Optik.

Gissibl druckte seine optischen Freiformflächen und seine Miniatur-Mikroskop-Objektive auch direkt auf CMOS-Chips, die somit einen extrem kompakten Sensor darstellten. Mit einer solchen Optik könnten Kameras für Drohnen realisiert werden, die nicht viel größer als eine Biene wären, oder auch kleinste Sensoren für selbstfahrende Autos, autonome Roboter oder für Maschinen der Industrie 4.0. Auch kleinste Körpersensoren und Rundum-Kameras für Handys sind vorstellbar.

Die Forscher konnten ihre Optiken auch mit Beleuchtungssystemen kombinieren. Dadurch kann die Optik einer LED, die das Licht in eine bestimmt Richtung konzentriert, extrem verkleinert werden. Die Stuttgarter Forscher glauben, dass mithilfe des 3D Drucks eine ganz neue Ära in der Fertigung von Miniaturoptiken anbricht. „Der Zeitraum von der Idee über das Optikdesign zum CAD-Modell und zum fertigen, gedruckten 3D Mikro-Objektiv verkürzt sich auf unter einen Tag“ sagt Prof. Harald Giessen. „Damit eröffnen wir ähnliche Möglichkeiten, wie sie seit einigen Jahren beim Computer-Integrated Manufacturing im Maschinenbau und in der Metallverarbeitung bestehen.“

Das Projekt, das im Rahmen der „Spitzenforschungs-Initiative“ der Baden-Württemberg-Stiftung gefördert wurde, arbeitet eng mit der Industrie zusammen. Das Startup-Unternehmen Nanoscribe, eine Ausgründung des Karlsruher Instituts für Technologie (KIT) in Karlsruhe, baut die hochpräzisen 3D Drucker mit integriertem Femtosekunden-Laser. Die Firma Carl Zeiss aus Oberkochen berät die Forscher in allen Fragen der Optik. Und die Weltmarktführer im Bereich der Endoskopie sitzen ebenfalls in Baden-Württemberg.

Ansprechpartner:
Prof. Dr. Harald Giessen, Universität Stuttgart, 4. Physikalisches Institut
Email: giessen@physik.uni-stuttgart.de, Tel: 0711-6856-5111
Weiteres Bildmaterial unter http://www.pi4.uni-stuttgart.de/

Referenzen:
T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen: Two-photon direct laser writing of ultracompact multi-lens objectives, Nature Photonics 10 (2016).DOI: 10.1038/NPHOTON.2016.121
T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen: Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres, Nature Communications 7, 11763 (2016).
S. Thiele, T. Gissibl, H. Giessen, and A. Herkommer: Ultra-compact on-chip LED collimation optics by 3D-printing, Opt. Lett. 41, 3029 (2016).

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation
30.03.2020 | Leibniz Universität Hannover

nachricht Stabile Blasen und ein Wasserläufer bewahren Stahl vor Erosion
30.03.2020 | Otto-von-Guericke-Universität Magdeburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungsnachrichten

Wo bleibt das Plastik im Ozean?

30.03.2020 | Ökologie Umwelt- Naturschutz

Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

30.03.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics