Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Materialdesign ermöglicht ungestörte Lichtwellen

10.08.2015

In Materialien, die Licht abschwächen und verstärken können, sind überraschende Arten von Lichtwellen möglich – das zeigen Berechnungen der TU Wien.

Wenn eine Lichtwelle in ein Material eindringt, ändert sie sich normalerweise drastisch. Sie wird gestreut und abgelenkt, und durch die Überlagerung von Lichtwellen kommt es zu einem Muster aus helleren und dunkleren Bereichen.


Eine Welle dringt in ein Material ein: Bei speziell designten nicht-hermitischen Materialien bleibt die Welle unbeeinflusst.

TU Wien


Eine Welle dringt in ein Material ein: Normalerweise kommt es zu komplizierten Wellenüberlagerungen, zu hellen und dunklen Bereichen.

TU Wien

In maßgeschneiderten High-Tech-Materialien, die das Licht lokal verstärken oder abschwächen können, ergeben sich nun neue Möglichkeiten solche Effekte vollständig zu unterdrücken: Wie eine theoretische Arbeit der TU Wien zeigt, ermöglichen diese neuen Materialien ganz besondere Lichtwellen, die im Inneren des Materials an jedem Ort dieselbe Intensität aufweisen - so als gäbe es keinerlei Wellenüberlagerung. Durch diese ungewöhnlichen Eigenschaften könnten sich diese neuartigen Lösungen der Wellengleichung des Lichts technisch nutzen lassen.

Hindernisse verändern die Lichtintensität

Wenn sich eine Lichtwelle gerade und eben durch den freien Raum bewegt, dann kann sie überall dieselbe Intensität haben, ihr Licht ist demnach überall gleich hell. Trifft sie allerdings auf ein Hindernis, dann wird die Welle abgelenkt, das Licht ist danach an manchen Stellen heller, an anderen Stellen dunkler als es ohne Hindernis gewesen wäre. Erst durch solche Überlagerungs- oder Interferenzeffekte können wir Objekte sehen, die selbst kein Licht ausstrahlen.

In den letzten Jahren gab es allerdings immer wieder Experimente mit neuen Materialien, die Lichtwellen auf ganz besondere Weise verändern können: Sie können das Licht lokal verstärken (ähnlich wie das in einem Laser geschieht) oder auch abschwächen (wie in einer Sonnenbrille). „Wenn solche Prozesse möglich sind, muss man die Lichtwelle mathematisch anders beschreiben, als man es in gewöhnlichen, transparenten Materialien tut“, erklärt Prof. Stefan Rotter (Institut für Theoretische Physik, TU Wien). „Wir sprechen dann von sogenannten nicht-hermitischen Medien.“

Eine neue Lösung für die Wellengleichung

Konstantinos Makris und Stefan Rotter entdeckten gemeinsam mit Kollegen aus den USA, dass sich damit neuartige Lösungen der Wellengleichung finden lassen. „Man erhält Lichtwellen, die überall gleich hell sind, wie bei einer ebenen Welle im freien Raum, obwohl die Welle ein stark strukturiertes Material durchdringt“, sagt Konstantinos Makris. „Für die Welle ist das Material in gewissem Sinn unsichtbar, obwohl sie es durchdringt und mit ihm stark wechselwirkt.“

Das neue Konzept der Physiker erinnert an sogenannte „Metamaterialien“, mit denen in den letzten Jahren viel experimentiert wurde. Dabei handelt es sich um strukturierte Materialien, die Licht auf ungewöhnliche Weise ablenken und in bestimmten Fällen um ein Objekt herum führen können, sodass das Objekt wie durch Harry Potters Tarnumhang ("invisibility cloak") unsichtbar gemacht wird.

„Unsere nicht-hermitischen Materialien funktionieren allerdings auf Basis eines anderen Prinzips“, betont Stefan Rotter. „Die Lichtwelle wird nicht außen herumgelenkt, sondern sie durchdringt das Material. Aber der Effekt, den das Material auf die Intensität der Welle hat, wird durch ein genau justiertes Wechselspiel aus Verlust und Verstärkung ausgeglichen.“ Am Ende ist die Welle überall im Raum genauso hell, wie sie ohne das Objekt gewesen wäre.

Bis es tatsächlich gelingt, Objekte herzustellen, die Lichtwellen unberührt passieren lassen, ist noch eine Reihe technischer Details zu lösen – gearbeitet wird daran bereits. Mathematisch ist allerdings nun bewiesen, dass es neben Metamaterialien auch noch einen anderen, äußerst vielversprechenden Pfad gibt, Wellen auf ungewöhnliche Weise zu manipulieren. „In einem gewissen Sinn haben wir mit unserer ersten Arbeit zu diesem Thema eine Tür aufgestoßen, hinter der wir noch eine Vielzahl an neuen Einsichten vermuten“, erklärt Konstantinos Makris.

Rückfragehinweis:
Prof. Stefan Rotter
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13618
stefan.rotter@tuwien.ac.at

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms8257 Originalpublikation in Nature Communications
http://arxiv.org/abs/1503.08986 frei zugängliche Version

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Was die Tiefsee über die Sterne verrät
18.12.2018 | Technische Universität Berlin

nachricht Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
17.12.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo

18.12.2018 | Biowissenschaften Chemie

Notsignal im Zellkern – neuartiger Mechanismus der Zellzykluskontrolle

18.12.2018 | Biowissenschaften Chemie

Neue Methode für sichere Brücken

18.12.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics