Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Forschungszentrum für Nanosatelliten

03.09.2014

Je kleiner und leichter ein Satellit ist, desto günstiger ist er beim Start. 10 bis 100 Millionen Euro muss man aufbringen, um einen gewöhnlichen Satelliten von ein paar Hundert Kilogramm und einigen Metern Länge mit einer Rakete in den Orbit zu befördern. Pro Kilo wird mit 20.000 Euro Startkosten gerechnet. An der TU Berlin werden Kleinstsatelliten entwickelt und betrieben, die in eine Handtasche passen und nur 1 bis 15 Kilogramm wiegen.

Mit dem kürzlich eröffneten Forschungszentrum für Nanosatelliten, das als universitäre Einrichtung weltweit einmalig ist, bekommt die Universität auf dem Campus Charlottenburg einen Ort, an dem Wissenschaftlerinnen und Wissenschaftler gemeinsam mit Studierenden an derzeit sieben neuen Satelliten forschen und bauen. Diese können mit Infrarotkameras Waldbrände erkennen, neue Technologien im Weltraum erproben oder ein Kommunikationsnetz für Satellitenschwärme herstellen.


Die Antennenanlage auf dem Dach der TU Berlin gehört zur Bodenstationstechnik des Fachgebiets Raumfahrttechnik.

© TU Berlin/PR/Ulrich Dahl

„Am Fachgebiet Raumfahrttechnik der TU Berlin befördern sich Forschung und Lehre gegenseitig auf sehr eindrucksvolle Weise,“ erklärt Prof. Dr. Christian Thomsen, Präsident der TU Berlin. „Die Satelliten, die von Studierenden und Promovierenden mitentwickelt und gebaut werden, setzen im weltweiten Vergleich Meilensteine in der Kleinstsatellitenforschung. Das Forschungszentrum für Nanosatelliten ist nicht nur ein Ort für Innovationen, sondern auch für den Nachwuchs, der sich hier auf Herausforderungen in Wissenschaft und Industrie sehr gut vorbereiten kann.“

Prof. Dr.-Ing. Klaus Brieß, Leiter des Fachgebiets Raumfahrttechnik an der TU Berlin, sagt: „Die Klasse der Nanosatelliten mit einer Masse von 1 bis 15 Kilogramm steht noch am Anfang ihrer Entwicklung zu vollwertigen Werkzeugen der Umweltüberwachung, Fernerkundung oder Kommunikation. Wir forschen an neuartigen Komponenten für Kleinstsatelliten sowie an der Weltraumdemonstration neuer Instrumentenplattformen und Satellitensysteme.“

Das neue Forschungszentrum Nanosatelliten hat auf insgesamt 330 Quadratmetern ein Missionskontrollzentrum, ein elektrostatisch-geschützten Integrations- und Testbereich mit Thermalkammer, Vakuumkammer und Lagerregelungsstand sowie Computerarbeitsplätze und einen Besprechungsraum. Die Gesamtkosten für den Bau und die Einrichtung des Forschungszentrums belaufen sich auf rund 100.000 Euro. In dem Labor werden die Nanosatelliten TUBIN, TechnoSat und vier S-Net-Modelle integriert, die im Rahmen von Projekten, welche das Bundesministerium für Wirtschaft und Technologie fördert, entwickelt werden. Die Satelliten sollen anspruchsvolle Forschungsaufgaben übernehmen:

Mit TUBIN (TU Berlin Infrared Nanosatellite) wird die Erdfernerkundung mit optischen Instrumenten entwickelt und erprobt. Der Satellit hat eine Gesamtmasse von etwa 15 Kilogramm und äußere Abmaße von etwa 30 mal 45 mal 45 Zentimeter. Er trägt eine Nutzlast von zwei Infrarot Kameras sowie einer Kamera mit Sensitivität im sichtbaren Wellenlängenbereich. Die Infrarotnutzlast soll die Anwendbarkeit der so genannten Bolometer-Technologie zur Detektion und Beobachtung von Hotspots wie zum Beispiel Waldbränden aus dem Weltraum demonstrieren. Die Mission soll 2016 starten.

Primäres Ziel der TechnoSat-Mission (geplanter Start 2015) ist die Demonstration und Weltraumerprobung neu entwickelter Komponenten und Subsysteme für Nanosatelliten. Sekundäres Missionsziel ist die Entwicklung und der Einsatz des adaptiven und wiederverwendbaren Nanosatellitenbusses TUBiX20 (TU Berlin inovative neXt generation 20 kg nanosatellite plattform). Unter Adaptivität wird hier die Anpassungsfähigkeit des Satellitenbusses an verschiedene Nutzlasten, Orbits und Missionsszenarien verstanden. TechnoSat wird eine Startmasse von etwa 15 Kilogramm und äußere Abmaße von etwa 30 mal 45 mal 45 Zentimeter aufweisen.

Mit den vier S-Net-Satelliten sollen die methodischen, theoretischen und technischen Grundlagen für eine zuverlässige moderne Kommunikation zwischen Satelliten untersucht und demonstriert werden. Mögliche Anwendungsbereiche sind Umwelt- und Klimaforschung, globale Frühwarnsysteme, Katastrophenmonitoring, Verkehrsüberwachung sowie On-Orbit-Servicing und planetare Robotik. Vier Funktransceiver zur Inter-Satellitenkommunikation, die an der TU Berlin entwickelt wurden, sollen auf vier niedrig fliegenden Satelliten aus der 10 Kilogramm-Klasse integriert werden. Die Nanosatelliten werden in einer Formation fliegen und ein Kommunikationsnetz im S-Band bilden. Die Experimente im Weltall starten voraussichtlich 2016.

Die Arbeit nach minimalistischen Prinzipien am Fachgebiet Raumfahrttechnik der TU Berlin, sowohl in Technik als auch in Bezug auf den Energieverbrauch, sollte ursprünglich zu Lehr- und Ausbildungszwecken dienen. Seit 1963 werden an der Universität die Grundlagen der Raumfahrttechnik gelehrt und seit 25 Jahren gemeinsam mit Studierenden Mikro-, Nano- und Picosatelliten entwickelt und gebaut. Nun ist die TU Berlin mit der Kleinstsatellitenforschung weltweit an der Spitze. Zehn TU-Satelliten sind bereits erfolgreich in den Orbit gebracht, darunter auch die drei BEESAT-Picosatelliten (Berliner Experimental- und Ausbildungssatelliten), dessen erste Reihe als technologischer Meilenstein gilt. Sie sind mit jeweils rund 10 Zentimetern Kantenlänge und 1 Kilogramm Gesamtmasse die kleinsten Satelliten, die am Fachgebiet gebaut wurden. Der Missionsstart von BEESAT-4 ist für 2015 geplant.

Mit dem neuen Forschungszentrum Nanosatelliten wird der Campus Charlottenburg um einen weiteren modernen Forschungsort bereichert. Erst kürzlich wurden das BasCat-Labor für Katalyseforschung, ein Energielabor für Gasturbinenforschung und ein Haus für Biochemie eröffnet. Außerdem verkündete die Wüstenrot Stiftung Ende 2013, dass sie 3,5 Millionen Euro für die Sanierung des großen rosafarbenen Umlauftanks auf dem Campus Charlottenburg zur Verfügung stellen wird, um so die außergewöhnliche Architektur zu schützen und weitere Forschungen in dem Gebäude zu ermöglichen.

Weitere Informationen erteilt Ihnen gern:

Prof. Dr.-Ing. Klaus Brieß, TU Berlin,

Institut für Luft- und Raumfahrt, Fachgebiet Raumfahrttechnik,

Tel.: 030 / 314-21339, E-Mail: Klaus.briess@ilr.tu-berlin.de

Stefanie Terp | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics