Neue Strategien im Moleküldesign: Wissenschaftler verändern Elektrodeneigenschaften

Aus den Resultaten der Untersuchung entwickelten die Wissenschaftler nun eine Strategie, mit deren Hilfe künftig Elektrodeneigenschaften in bisher ungeahnter Weise verändert werden können.

Dass Grundlagenforschung zu den Kernkompetenzen der TU Graz gehört, beweisen die Wissenschaftler Tag für Tag. Laufend erscheinen Forschungsergebnisse in international renommierten Fachjournalen; das bestätigt auch der jüngst erschienene Artikel mit dem Titel „Work-Function Modification beyond Pinning: When Do Molecular Dipoles Count?“, veröffentlicht von den Physikern Egbert Zojer, David Egger und Oliver Hofmann vom Institut für Festkörperphysik.

Ausschlaggebend für das quantenmechanische Experiment der Grazer Forscher, das dem Artikel zugrunde liegt, war folgende Problemstellung aus dem Bereich der Halbleitertechnologie: In den letzten Jahren zeigte sich immer wieder, dass Grenzflächen zwischen den einzelnen Komponenten die entscheidenden Elemente organischer Bauelemente sind. Ein signifikanter Faktor ist dabei die Ladungsträgerinjektion von der Elektrode ins organische Halbleitermaterial.

Diese lässt sich zum Beispiel durch die Eingliederung dipolarer – zweipoliger – Zwischenschichten kontrollieren. Dazu hat man in der Vergangenheit entweder Moleküle eingesetzt, die selbst ein Dipolmoment tragen oder mit Hilfe von Ladungstransferprozessen durch die Metallelektrode eine Dipolschicht erzeugt.

Kombination beider Effekte
Das Potential dieser injektionsverbessernden Schichten ließe sich aber nur dann enorm steigern, wenn man die oben genannten Effekte kombinieren könnte. Die neuesten Forschungsergebnisse zeigen nun auf Basis quantenmechanischer Simulationen auf, dass die beiden Einflüsse – Ladungstransfer und intrinsischer Dipol – typischerweise nicht additiv sind und beschreibt daher Strategien auf welche Art und Weise man Moleküle idealerweise so gestalten müsste, um beide Effekte zu kombinieren. Damit zeigen die Physiker Wege auf, wie in Zukunft Grenzflächen mit ungeahnten elektronischen Eigenschaften realisieren werden könnten. Als Anwendungsbereich wäre z. B. eine entscheidende Aufwertung elektronischer und optoelektronischer Bauelemente wie Schaltungen, Displays, Beleuchtungselemente oder Transistoren denkbar.
Originalarbeit:
Work-Function Modification beyond Pinning: When Do Molecular Dipoles Count? Oliver T. Hoffmann, David A. Egger, Egbert Zojer. Online publiziert in „Nano Letters“ am 12. Oktober 2010
Rückfragen:
Ao. Univ.-Prof. DI Dr. Egbert Zojer
Institut für Festkörperphysik
E-Mail:egbert.zojer@tugraz.at
Tel +43 (316) 873 – 8475

Media Contact

Alice Senarclens de Grancy idw

Weitere Informationen:

http://www.tugraz.at

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer