Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Solartechnik für die Energiewende

28.06.2018

Deutsch-Französische Forschungsinitiative: Physiker der Universität Jena entwickeln und testen neuartige Materialien für einen möglichen Einsatz als hocheffiziente Solarzellen. Ihr Forschungsvorhaben „Quest for Energy“ wird vom Deutschen Akademischen Austauschdienst (DAAD) bis 2022 mit etwa einer Million Euro gefördert und startet im Juli.

Weniger als zwei Grad soll sich die Erde im Vergleich zur vorindustriellen Zeit erwärmen. So sieht es das Pariser Klimaabkommen von 2015 vor. Um dieses Ziel zu erreichen, müssten weltweit die Emissionen klimaschädlicher Treibhausgase drastisch reduziert werden. Das wiederum setzt eine globale Energiewende voraus: fossile Brennstoffe wie Öl, Gas und Kohle müssten weitgehend durch erneuerbare Energieträger ersetzt werden.


Dr. Michael Zürch vom Institut für Optik und Quantenelektronik der Uni Jena. Der Physiker untersucht in seinem neuen Projekt Halbleitermaterialien, die Silizium in Solarmodulen ablösen könnten.

Foto: Jan-Peter Kasper/FSU

So weit, so gut. Bekanntermaßen hapert es jedoch an der Umsetzung der Klimaziele. Und das sei nicht allein fehlendem politischen Willen geschuldet, ist Dr. Michael Zürch überzeugt. „Die Energiewende ließe sich mit Sicherheit beschleunigen, wenn wir beispielsweise bessere Solartechnik hätten“, sagt der Physiker, der an der Friedrich-Schiller-Universität Jena promoviert wurde und seit 2015 an der renommierten University of California in Berkeley geforscht hat.

Er verweist darauf, dass heute eingesetzte Solarmodule auf Silizium-Basis einen Wirkungsgrad von maximal 20 Prozent haben. Anders ausgedrückt: Rund drei Viertel der Sonnenenergie lässt sich mit den heutigen Modulen überhaupt nicht nutzen. „Wir brauchen Alternativen zu Silizium, die eine effizientere Umwandlung von Sonnenenergie in Strom ermöglichen“, so Zürch.

Diese Alternativen hat Zürch in den kommenden vier Jahren intensiv im Blick: Mit Kollegen am Lehrstuhl für Quantenelektronik der Uni Jena sowie mit französischen und US-amerikanischen Partnern startet er am 1. Juli sein Forschungsprojekt „Quest for Energy“. Der Deutsche Akademische Austauschdienst (DAAD) fördert das Vorhaben im Rahmen der deutsch-französischen Forschungsinitiative „Make our planet great again“ bis 2022 mit knapp einer Million Euro.

Zweidimensionale Halbleiternanomaterialien sollen Silizium ablösen

Eine vielversprechende Materialklasse, die Silizium in Solarmodulen ablösen könnte, sind Halbleiternanomaterialien, wie Prof. Dr. Christian Spielmann erläutert. „Diese nur wenige Atomlagen dünnen zweidimensionalen Schichten besitzen ganz außergewöhnliche optische und elektronische Eigenschaften, die sie als Halbleiter bestens geeignet machen“, so der Physiker, in dessen Team Zürchs Projekt nun angesiedelt ist. Bekanntestes Beispiel solcher 2D-Nanomaterialien ist Graphen. Die Jenaer Physiker wollen jedoch eine neue, bislang kaum untersuchte Klasse dieser Materialien unter die Lupe nehmen: sogenannte Übergangsmetall-Dichalcogenide.

„Dabei handelt es sich um Verbundmaterialien, die je nach Zusammensetzung in ihren Eigenschaften variieren und so für verschiedene Anwendungen maßgeschneidert werden könnten“, erläutert Zürch. Allerdings sei bisher nur wenig über die fundamentalen Vorgänge in diesen Materialien bekannt, wenn sie mit Licht wechselwirken. Aufgrund ihrer speziellen Nanoeigenschaften laufen die physikalischen Prozesse in diesen Materialien besonders schnell ab. Diese wollen die Physiker nun im Detail untersuchen, um ihre Eignung als Solarmaterial zu prüfen.

„Uns geht es konkret darum, die Ladungsträger – sprich die Elektronen – in dem Material zu beobachten, wenn sie mit Licht beleuchtet werden.“ Das soll mit Hilfe eines leistungsfähigen Ultrakurzpulslasers passieren, der die extrem schnellen Bewegungen der Elektronen in Momentaufnahmen von wenigen Hundert Attosekunden Länge erfasst. Eine Attosekunde ist eine Trillionstel Sekunde – der kurze Moment, den es dauert, wenn Lichtteilchen die Länge eines Wassermoleküls passieren.

Die Arbeit der Jenaer Physiker sei zunächst „lupenreine Grundlagenforschung“, wie Zürch erklärt. „Doch langfristig können wir so vielleicht den Weg für einen zielgerichteten Einsatz solcher Verbundmaterialien in der Solartechnik ebnen und die Energiewende tatsächlich voranbringen.“

Kontakt:
Dr. Michael Zürch
Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947213
E-Mail: michael.zuerch[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe
11.12.2018 | Technische Universität Wien

nachricht Neue Methode verpasst Mikroskop einen Auflösungsschub
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics