Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Ordnung in der Quantenwelt

01.11.2012
MPQ-Wissenschaftler erzeugen mit Laserstrahlen Quantenmaterie mit neuartigen kristallähnlichen Eigenschaften.

Sowohl Graphit als auch Diamant bestehen ausschließlich aus Kohlenstoffatomen. Der kleine aber feine Unterschied zwischen beiden Materialien ist die geometrische Anordnung ihrer Bausteine, mit weitreichenden Folgen für ihre Eigenschaften. Undenkbar, dass ein Stoff beides, d.h. Graphit und Diamant, gleichzeitig sein kann.


Illustration einer Anordnung von fünf Rydberg-Atomen. Grün: Atome im Grundzustand, Rot: angeregte Rydberg-Atome, Violett: Einflusssphäre der Rydberg-Atome

MPQ, Abt. Quanten-Vielteilchensysteme


Unterschiedliche geometrische Konfigurationen der verschiedenen Anregungszustände. a) Einzelne Schnappschüsse von Anregungszuständen mit unterschiedlich vielen Rydberg-Atomen. b) Messergebnisse nach der Gruppierung einer Vielzahl von Einzelbildern gemäß der Zahl der angeregten Rydberg-Atome. c) Ergebnisse der numerischen Rechnungen

MPQ, Abt. Quanten-Vielteilchensysteme

Doch für Quantenmaterie gilt diese Einschränkung nicht, wie jetzt ein Team aus der Abteilung Quanten-Vielteilchensysteme von Prof. Immanuel Bloch (Max-Planck-Institut für Quantenoptik und Ludwig-Maximilians-Universität München) bei Experimenten mit ultrakalten Quantengasen zeigen konnte. Mit Hilfe von Laserstrahlen erreichten die Wissenschaftler, dass sich einzelne Atome zu Strukturen mit einer definierten Geometrie anordneten (Nature, 1. November 2012).

Doch im Unterschied zu klassischen Kristallen existieren dabei alle möglichen geometrischen Konfigurationen gleichzeitig, ähnlich wie sich Schrödingers Katze in einer Überlagerung aus den beiden Zuständen „tot“ und „lebendig“ befindet. Voraussetzung dafür war, dass sich die Atome in einem hoch angeregten sogenannten Rydberg-Zustand befanden. „Solche Rydberg-Gase bergen das Potential, exotische Materiezustände zu realisieren und zum Beispiel magnetische Quantenphasen zu simulieren“, betont Prof. Immanuel Bloch. Unterstützt wurden die experimentellen Arbeiten durch theoretische Modelle, die von einer Gruppe um Dr. Thomas Pohl (Max-Planck-Institut für die Physik komplexer Systeme, Dresden) entwickelt wurden.

Im Experiment wird zunächst eine Wolke aus einigen hundert Rubidiumatomen auf Temperaturen nahe dem absoluten Nullpunkt abgekühlt und in einer Lichtfalle eingefangen. Dieser Gaswolke wird ein periodisches Lichtfeld – ein sogenanntes optisches Gitter – so überlagert, dass die Atome im zentralen Bereich der Falle sehr gleichmäßig verteilt sind. Dann werden die Gasatome mit Laserlicht zu einem Übergang in einen Rydberg-Zustand angeregt, in dem das äußerste Hüllenelektron extrem weit vom Atomkern entfernt ist. Dadurch bläht sich die Einflusssphäre des Atoms wie ein Ballon um etwa das Zehntausendfache auf und erreicht einen vergleichsweise „riesigen“ Durchmesser von mehreren Mikrometern – dies entspricht in etwa einem Zehntel des Durchmessers eines durchschnittlichen Haares. Zwischen diesen „Superatomen“ treten nun Kräfte entsprechend großer Reichweite auf, sogenannte van der Waals-Kräfte.

Die Rydberg-Zustände sind dabei so ausgewählt, dass die van der Waals-Kräfte abstoßend wirken. Daher müssen die angeregten Atome einen Mindestabstand von einigen Mikrometern einhalten. Diese gegenseitige Blockade führt zu räumlichen Korrelationen der Teilchen, so dass sich, je nach Zahl der Rydberg-Atome, ganz unterschiedliche Geometrien ausbilden können (siehe Abb. 1). „Wir müssen uns aber klar machen, dass in unserem angeregten System alle geometrischen Ordnungen gleichzeitig vorliegen. Genauer gesagt, handelt es sich dabei um eine kohärente Überlagerung der einzelnen Anregungszustände“, erklärt Dr. Marc Cheneau, Wissenschaftler am Experiment. „Dieser neue Materiezustand ist ein äußerst zerbrechliches, kristallähnliches Gebilde; er existiert nur, solange die Anregung mit Laserstrahlen aufrechterhalten wird und vergeht, sobald der Strahl abgeschaltet wird.“

Sobald das System jedoch beobachtet wird, zerfällt die Überlagerung in einen spezifischen Anregungszustand, mit einer bestimmten Zahl von Rydberg-Atomen in einer bestimmten geometrischen Anordnung (auch dies wieder analog zu dem Beispiel von Schrödingers Katze, die, wenn man nachschaut, entweder tot oder lebendig anzutreffen ist). In einer Serie von „Schnappschüssen“ können die Wissenschaftler die jeweiligen Anregungszustände sichtbar machen. Sie verwenden dabei eine Technik, bei der einzelne Atome mit sehr hoher räumlicher Auflösung über das von ihnen ausgesandte Fluoreszenzlicht direkt mikroskopisch ab-gebildet werden. „Wir beobachten, dass sich Strukturen herausbilden, deren räumliche Orientierung zufällig ist, die aber eine definierte Geometrie besitzen“, erklärt Peter Schauß, der an diesem Experiment im Rahmen seiner Doktorarbeit forscht. Um die verschiedenen Struk-turen eindeutig erkennen zu können, werden die Bilder nach der Zahl der angeregten Rydberg-Atome gruppiert. Wie in Abb. 2 zu sehen ist, ordnen sich drei Atome zu gleichseitigen Dreiecken an, vier Atome zu Vierecken, fünf Atome zu Fünfecken. Numerische Simulationsrechnungen aus der Gruppe von Dr. Thomas Pohl geben diese Resultate gut wieder.

Was die Ergebnisse für die einzelnen Anregungszustände betrifft, lassen sich die Beobachtungen noch klassisch interpretieren. „Um das quantenphysikalische Verhalten unseres Systems aufzudecken, haben wir die zeitliche Abhängigkeit der Wahrscheinlichkeiten für die einzelnen, durch eine unterschiedliche Zahl von Rydberg-Atomen charakterisierten Anregungszustände untersucht“, erläutert Peter Schauß. „Dabei konnten wir feststellen, dass die Dynamik des Anregungsprozesses zehnmal schneller ist als in klassischen Systemen ohne Blockadeeffekte. Dies ist ein erster Hinweis darauf, dass wir es in der Tat mit kohärenten Quantenzuständen zu tun haben, die eine Überlagerung aus verschiedenen, räumlich geordneten Konfigurationen darstellen.“

In naher Zukunft wollen sich die Wissenschaftler der Herausforderung stellen, gezielt Rydberg-Kristalle mit einer fest definierten Anzahl von angeregten Atomen herzustellen. Die Technik der Adressierung einzelner Atome ließe sich in Verbindung mit dem oben erwähnten Blockadeeffekt dazu nutzen, Quantengatter zu entwickeln, auf deren Basis Quantensimulationen für eine Vielzahl von Fragestellungen möglich wären. Mehrere Rydberg-Atome ließen sich auch zu einem skalierbaren System für Quanteninformationsverarbeitung vernetzen. Olivia Meyer-Streng

Originalveröffentlichung:
Peter Schauß, Marc Cheneau, Manuel Endres, Takeshi Fukuhara, Sebastian Hild, Ahmed Omran, Thomas Pohl, Christian Groß, Stefan Kuhr, and Immanuel Bloch
Observation of spatially ordered structures in a two-dimensional Rydberg gas
Nature, 1. November 2012
Kontakt:
Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 (0) 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de
Dr. Marc Cheneau
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 (0) 89 / 32 905 -631
E-Mail: marc.cheneau@mpq.mpg.de
Peter Schauß
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 (0) 89 / 32 905 -218
E-Mail: peter.schauss@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantencomputern das Lernen beibringen
24.02.2020 | Leibniz Universität Hannover

nachricht Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung
24.02.2020 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantencomputern das Lernen beibringen

24.02.2020 | Physik Astronomie

Nanopartikel gezielt zum Tumor lenken: HZDR-Forscher spüren Krebszellen mit maßgeschneiderten Materialien auf

24.02.2020 | Biowissenschaften Chemie

Wie Erdbeben die Schwerkraft verformen

24.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics