Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Moleküle und Sternentstehung in der Milchstraße

10.05.2012
Das Astroflugzeug SOFIA hat die erste Serie von Wissenschaftsflügen mit dem in Deutschland gebauten GREAT-Empfänger abgeschlossen.

Die Ergebnisse werden nun in einer speziellen Ausgabe der Zeitschrift "Astronomy & Astrophysics" (Volume 542, vom 10. Mai) veröffentlicht, ergänzt mit Berichten über die dem GREAT-Empfänger zugrunde liegende Technologien.


Die Aufnahme zeigt das farbenprächtige Sternentstehungsgebiet um den Stern Rho Ophiuchi in ca. 400 Lichtjahren Entfernung. Die Position des massearmen Protosterns IRAS16293-2422 ist mit einem roten Kreis markiert; in dieser Richtung konnte das Molekül OD, also deuteriertes Hydroxyl, erstmalig im Weltraum nachgewiesen werden. Das mit dem GREAT-Empfänger an Bord von SOFIA beobachtete Spektrum zeigt die Moleküllinie bei einer Frequenz von 1,3915 Terahertz (oder 0,215 mm Wellenlänge). Das OD-Molekül (rot: Sauerstoff, grau: Deuterium) ist eine Isotopenvariante von Hydroxyl (OH), bei der das Wasserstoffatom durch sein schwereres Isotop Deuterium ersetzt wurde. OD markiert einen wichtigen Zwischenschritt auf Weg zur Bildung von Wasser im Universum, und mag als chemische Zeitmarke in den Frühphasen der Sternentstehung dienen. Der helle gelblich leuchtende Stern unten links ist Antares im Sternbild Skorpion, einer der hellsten Sterne überhaupt am Himmel. Rechts von Antares ist der Kugelsternhau
Bildrechte: Spektrum: MPIfR/B. Parise, Hintergrund-Foto: ESO/S. Guisard (www.eso.org/~sguisard).


Das Ferninfrarot-Spektrometer GREAT (auf dem Bild in senkrechter Position) ist innerhalb der Druckkabine an den Teleskopflansch am Gegengewicht des Teleskops angeschlossen. Während des Fluges bewegt sich GREAT in einem Winkelbereich von ±20 Grad von der Senkrechten. Das Teleskop (auf dem Bild ist das Gegengewicht in 45-Grad-Stellung in Blau sichtbar) kann dem astronomischen Objekt in einem Winkelbereich zwischen 25 und 65 Grad von der Senkrechten folgen.
Foto: R. Güsten/MPIfR.

Die Vielseitigkeit dieses neuen Forschungsinstruments zeigt sich in Berichten über die Erstentdeckung von zwei neuen Molekülen im Weltraum und Untersuchungen zu unterschiedlichen Phasen der Sternentstehung. GREAT wurde von einem Konsortium deutscher Forschungsinstitute unter Leitung von Rolf Güsten (MPI für Radioastronomie) entwickelt.

Die erste Serie wissenschaftlicher Beobachtungsflüge mit dem "German Receiver for Astronomy at Terahertz Frequencies" (GREAT) an Bord des Stratosphären-Observatoriums für Infrarotastronomie (SOFIA) wurde im November 2011 erfolgreich abgeschlossen. Knapp ein halbes Jahr später werden nun die Ergebnisse in der renommierten europäischen Wissenschaftszeitschrift "Astronomy & Astrophysics" veröffentlicht. Eine internationale Gruppe von Wissenschaftlern berichtet in insgesamt 22 Einzelbeiträgen über die einzigartigen wissenschaftlichen Ergebnisse sowie über die dem Experiment zugrunde liegenden Technologien von GREAT.

SOFIA, ein Gemeinschaftsprojekt der amerikanischen Raumfahrtorganisation NASA und des Deutschen Zentrums für Luft- und Raumfahrt (DLR), betreibt ein Teleskop von 2,70 m Durchmesser in einer umgebauten Boeing 747SP. SOFIA fliegt in Höhen bis zu 13700 m und ermöglicht damit den Zugang zu astronomischen Signalen bei ferninfraroten Wellenlängen, die ansonsten vom Wasserdampf in der Erdatmosphäre absorbiert würden. SOFIA, weltweit das einzige Flugzeug-Observatorium im Einsatz, öffnet so den Himmel für hochauflösende Spektroskopie im fern-infraroten Spektralbereich mit dem GREAT-Empfänger.

"Die hohe Auflösung des GREAT-Spektrometers ist speziell dafür ausgelegt, die Physik und Chemie des interstellaren Gases und den Lebenszyklus der Sterne zu erforschen, von ihrer frühen embryonalen Phase noch innerhalb der Geburtswolke bis zum Tod des entwickelten Sterns, bei dem die Hülle wieder zurück in den umgebenden Raum geschleudert wird", sagt Rolf Güsten vom Bonner Max-Planck-Institut für Radioastronomie, der leitende Wissenschaftler des GREAT-Projekts. "Diese phantastischen Ergebnisse bereits aus den ersten Wissenschaftsflügen sind der Lohn für unsere langjährige Entwicklungsarbeit und unterstreichen das wissenschaftliche Potential der Ferninfrarot-Spektroskopie mit Flugzeug-Observatorien."

Viele der hier präsentierten Veröffentlichungen erforschen den Sternentstehungsprozess in seinen allerfrühesten Phasen, in denen der embryonale Stern noch in heftiger Wechselwirkung mit den umgebenden Molekülwolken steht - er zerstört seine Geburtswolke, heizt das umgebende Material auf und ionisiert es. Die hohe spektrale Auflösung von GREAT ermöglicht es, durch die Untersuchung der Emission des ionisierten Kohlenstoffs in einer Reihe von Sternentstehungsgebieten das Geschwindigkeitsfeld des Gases in der umgebenden Molekülwolke aufzulösen. In den Hüllen von drei Protosternen gelang GREAT der direkte Nachweis des Kollaps der protostellaren Hüllen, was unmittelbar Rückschlüsse auf die dynamischen Prozesse bei der Entstehung eines Sterns erlaubt.

Zwei neue Moleküle wurden erstmalig im Weltraum nachgewiesen: OD, eine isotopische Variante von Hydroxyl (OH), bei der das Wasserstoffatom durch sein schwereres Isotop Deuterium ersetzt wurde, sowie das Sulfanyl-Radikal SH. Eine technologische Meisterleistung stellen erste spektroskopische Beobachtungen bei einer Frequenz von 2,5 Terahertz (0,120 mm Wellenlänge) dar; damit wird neues astrophysikalisches Territorium erkundet. Weiterhin wurde die Hülle eines Sterns in der Spätphase seiner Entwicklung untersucht, die durch den heißen Stern im Inneren aufgeheizt und ionisiert wird, sowie die heftige (Schock-)Wechselwirkung eines Supernova-Überrests mit dem umgebenden interstellaren Medium. Die physikalische Natur der zirkum-nuklearen Gasscheibe im Zentrum der Milchstraße wurde erforscht, die letztendlich das massereiche Schwarze Loch mit Materie anfüttert, sowie die Sternentstehung im Zentralbereich der nahen Galaxie IC342.

"Die reiche Ernte von wissenschaftlichen Resultaten bereits aus der allerersten Beobachtungskampagne mit SOFIA und unserem GREAT-Empfänger gibt einen guten Eindruck des gewaltigen wissenschaftlichen Potentials, das in diesem Flugzeug-Observatorium steckt", so Jürgen Stutzki von der Universität Köln, stellvertretender Projektleiter von GREAT. "SOFIA wird den rasanten technologischen Fortschritt insbesondere im Bereich der Terahertz-Technologie unmittelbar nutzen. Instrumente wie GREAT können, fortlaufend an die neuesten Entwicklungen angepasst, stets im Grenzbereich des technologisch möglichen eingesetzt werden und versprechen so aufregende astronomische Entdeckungen für die kommenden Jahre."

Die nächste Flugserie mit GREAT ist für den Spätherbst dieses Jahres geplant, dann bereits erweitert um Detektoren, die bis zu 4,7 Terahertz (0,063 mm) Wellenlänge arbeiten.

GREAT, der "German Receiver for Astronomy at Terahertz Frequencies", ist ein Empfänger für spektroskopische Ferninfrarot-Beobachtungen in einem Frequenzbereich von 1,25 bis 5 Terahertz (60-240 µm Wellenlänge), der von bodengebundenen Observatorien aus wegen der mangelnden atmosphärischen Transparenz nicht mehr zugänglich ist. Dieser Empfänger kommt als Instrument der ersten Generation am Flugzeug-Observatorium SOFIA zum Einsatz. GREAT wurde durch ein Konsortium deutscher Forschungsinstitute (MPIfR Bonn und KOSMA/Universität zu Köln, in Zusammenarbeit mit dem MPI für Sonnensystemforschung und dem DLR-Institut für Planetenforschung) entwickelt und gebaut. Projektleiter für GREAT ist Dr. Rolf Güsten (MPIfR). Die Entwicklung des Instruments ist finanziert mit Mitteln der beteiligten Institute, der Max-Planck-Gesellschaft und der Deutschen Forschungsgemeinschaft.

SOFIA, das "Stratosphären-Observatorium für Infrarot-Astronomie" ist ein Gemeinschaftsprojekt des Deutschen Zentrums für Luft- und Raumfahrt e.V. (DLR) und der National Aeronautics and Space Administration (NASA). Es wird auf Veranlassung des DLR mit Mitteln des Bundes (Bundesministerium für Wirtschaft und Technologie), des Landes Baden-Württemberg und der Universität Stuttgart durchgeführt. Der wissenschaftliche Betrieb wird auf deutscher Seite vom Deutschen SOFIA-Institut (DSI) der Universität Stuttgart koordiniert, in den Vereinigten Staaten von der Universities Space Research Association (USRA), Columbia, Md.

Veröffentlichungen auf der Grundlage von ersten Wissenschaftsflügen mit der amerikanischen IR-Kamera FORCAST an Bord von SOFIA wurden kürzlich in der US-amerikanischen Wissenschaftszeitschrift "Astrophysical Journal Letters" (Band 749) herausgebracht und in einer separaten Pressemeldung vorgestellt.

Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www.mpifr-bonn.mpg.de
http://www.mpifr-bonn.mpg.de/public/pr/pr-great-may2012-dt.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neuer Blick auf „seltsame Metalle“
17.01.2020 | Technische Universität Wien

nachricht Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik
16.01.2020 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: Wie Zellen ihr Skelett bilden

Wissenschaftler erforschen die Entstehung sogenannter Mikrotubuli

Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker lassen Bor-Atome wandern

17.01.2020 | Biowissenschaften Chemie

Infektiöse Proteine bei Alzheimer

17.01.2020 | Biowissenschaften Chemie

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics