Neue Materialklasse für die organische Elektronik

Ladungsträger nehmen stets den Weg senkrecht zu den Ebenen, zeigte die Gruppe um Merschjann: Dabei erzeugt Licht ein Elektron-Loch-Paar. C. Merschjann

Polymere Kohlenstoffnitride sind organische Verbindungen, die als gelbes Pulver aus Myriaden von Nanokristallen synthetisiert werden. Die kristalline Struktur ähnelt der von Graphit, denn die Kohlenstoffnitrid-Gruppen sind nur in der Ebene chemisch verbunden, während zwischen den Ebenen nur schwache „Van der Waals-Kräfte“ für den Zusammenhalt sorgen.

Dass Licht in dieser Materialklasse ein Elektron-Loch-Paar erzeugen kann, war bereits bekannt. So gab es schon zahlreiche Versuche, polymere Kohlenstoffnitride als preiswerte Photokatalysatoren für die solare Wasserspaltung einzusetzen, allerdings ist die Effizienz bislang vergleichsweise gering.

Nun hat ein Team um Dr. Christoph Merschjann (HZB, Freie Universität Berlin) und Prof. Dr. Stefan Lochbrunner (Universität Rostock) erstmals einen genauen Blick in die Prozesse bei der lichtinduzierten Ladungstrennung geworfen. „Das interessanteste Ergebnis ist, dass Ladungen dabei praktisch nur entlang einer Dimension transportiert werden, und zwar senkrecht zu den graphitähnlichen Schichten“, erklärt Merschjann.

Dabei erzeugt Licht ein Elektron-Loch-Paar, das sich anschließend in entgegengesetzte Richtungen auseinanderbewegt. Mit Hilfe von Femtosekundenspektroskopie sowie weiteren spektroskopischen zeitaufgelösten Methoden konnten sie erstmals quantitativ Beweglichkeit und Lebensdauern der Ladungsträger bestimmen.

Dabei zeigte sich, dass die Beweglichkeit ähnliche Werte wie in konventionellen organischen Halbleitermaterialien erreicht. Darüber hinaus bleiben die Ladungsträger lange erhalten, bevor sie wieder „rekombinieren“.

Polymere Kohlenstoffnitride sind nicht nur ungiftig und kostengünstig, sondern auch extrem belastbar, da sie chemisch sehr stabil sind und Temperaturen bis circa 500 °C standhalten. Bauelemente aus solchen Verbindungen könnten also in Umgebungen eingesetzt werden, die für die heutige organische Elektronik nicht geeignet sind.

Besonders interessant findet Merschjann jedoch die Perspektive, diese Verbindungen geordnet z.B. auf Graphen aufwachsen zu lassen. Denn Graphen besitzt eine extrem hohe Leitfähigkeit in der Ebene, während die Kohlenstoffnitride im Wesentlichen nur senkrecht dazu leitfähig sind.

„Die Kohlenstoffnitride müssen den Vergleich mit konventionellen organischen Halbleitermaterialien nicht scheuen – im Gegenteil: mit ihrer Eigenschaft als quasi-eindimensionale Halbleiter könnten sich ganz neuartige voll-organische optoelektronische Bauelemente realisieren lassen“, hofft Merschjann, der sich im aktuellen DFG-geförderten Forschungsprojekt an der FU Berlin mit dem direkten Nachweis der Ladungsträger beschäftigt.

Die Kooperation wurde durch das BMBF-Cluster-Projekt „Light2Hydrogen“ initiiert. Die Ergebnisse sind in der renommierten Zeitschrift „Advanced Materials“ publiziert: „Complementing Graphenes: 1D Interplanar Charge Transport in Polymeric Graphitic Carbon Nitrides“

DOI: 10.1002/adma.201503448

Media Contact

Dr. Ina Helms Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Informationen:

http://www.helmholtz-berlin.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer