Neue Ergebnisse können Polymerforschung revolutionieren

Netzwerke aus mikroskopischen, sogenannten „halb-flexiblen“ Polymeren, die permanent Brownscher Molekularbewegung unterworfen sind, finden sich überall in der Natur. Sie geben zum Beispiel in Form des Zellskeletts der biologischen Zelle mechanische Steifheit oder bilden außerhalb der Zelle das Gerüst, an dem sie sich fortbewegen kann. Die Mechanik dieser Stoffklasse zu verstehen, birgt immenses Potenzial, diverse Krankheiten, beispielsweise Krebs oder Fibrose, besser zu verstehen und mögliche Therapieformen zu entwickeln.

Aktin – eines der häufigsten Proteine und selbst Teil des Zellskeletts – wurde bisher verwendet, um die Mechanik von solchen Polymeren zu untersuchen. Es hat jedoch einen großen Nachteil: Die Steifheit der einzelnen Kettenmoleküle (Polymere) ist bei Aktin nicht veränderbar, was verlässliche Aussagen zum Verhalten der Polymere erschwerte.

Nun haben die Leipziger Wissenschaftler ein Material gefunden, dass dieses Problem umgeht. Mit künstlichen Röhren aus DNA als Polymere haben sie den Einfluss der Steifheit der Einzelmoleküle auf das Gesamtnetzwerk untersucht. Dicke und dünne Röhren wurden eingesetzt, um harte und weniger harte Strukturen zu bilden.

„Überraschenderweise passen die Ergebnisse nicht in das Bild, das sich die Polymertheorie dazu zuvor gemacht hat. Vielmehr entspricht die resultierende Mechanik mehr unserer Alltagserfahrung, dass Gebilde aus steifen Einzelteilen eben steifer sind als solche aus weichen“, erklärt Carsten Schuldt, Physiker der Universität Leipzig und Erstautor der Publikation.

Jetzt werde daran gearbeitet, diese Strukturen noch steifer zu machen, um sie für die Stammzelltherapie einsetzen zu können. „Damit haben wir die entsprechende Polymertheorie der vergangenen 20 Jahre in Frage gestellt“, sagt Schuldt.

Diese neuen Erkenntnisse über die Mechanik dieser Netzwerke sind nach seiner Einschätzung ein wichtiger Schritt in der Grundlagenforschung auf diesem Gebiet. Bis diese jedoch in der Praxis – etwa in der Krebstherapie – Anwendung finden, dauere es noch mehrere Jahre, so der Physiker.

Originaltitel der Veröffentlichung in „Physical Review Letters“: „Tuning Synthetic Semiflexible Networks by Bending Stiffness“ DOI: 10.1103/PhysRevLett.117.197801

Weitere Informationen:

Carsten Schuldt
Fakultät für Physik und Geowissenschaften
E-Mail: schuldt@physik.uni-leipzig.de

Prof. Dr. Josef A. Käs
Institut für Experimentelle Physik I
Telefon: +49 341 97-32470
E-Mail: jkaes@physik.uni-leipzig.de
Web: www.uni-leipzig.de/~physik/exp1.html

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.197801

Media Contact

Susann Huster idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Biomarker für Therapie-Erfolg bei Tumorerkrankung im Knochenmark identifiziert

Hochrangige klinische Studie zu CAR-T-Zelltherapie beim Multiplen Myelom. Die CAR-T-Zelltherapie hat sich als wirkungsvolle Behandlung verschiedener hämatologischer Krebserkrankungen etabliert. Doch nicht bei allen Erkrankten schlägt die Therapie gleich gut an….

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Partner & Förderer