Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Negative Masse und hohe Geschwindigkeit: Wie Elektronen eigene Wege gehen

12.04.2010
Physiker des Max-Born-Instituts (MBI) in Berlin berichten in der neuesten Ausgabe von Physical Review Letters, dass Elektronen in Halbleiterkristallen bei starker Beschleunigung durch ein elektrisches Feld eine negative träge Masse annehmen.

Isaac Newton [1] fand im 17. Jahrhundert heraus, dass eine Kraft die Beschleunigung eines Körpers bewirkt. Die träge Masse des Körpers entspricht dem Verhältnis von Kraft zu Beschleunigung, d.h. bei gleicher Kraft erfährt ein leichter Körper eine größere Beschleunigung als ein schwerer.

Die Masse des Körpers ist positiv, d.h. die Beschleunigung erfolgt in der Richtung der Kraft. Geladene Elementarteilchen wie das freie Elektron, dessen Masse nur 10 hoch -30 = 0,...(29 Nullen !)...1 Kilogramm beträgt, lassen sich in elektrischen Feldern auf extrem hohe Geschwindigkeiten beschleunigen.

Auch die Bewegung von Elektronen in Kristallen folgt dieser Gesetzmäßigkeit, sofern die elektrischen Felder klein sind. In diesem Regime besitzt das Kristallelektron eine Masse, die nur einen Bruchteil der Masse des freien Elektrons beträgt.

Berliner Forscher haben jetzt gezeigt, dass Kristallelektronen in extrem hohen elektrischen Feldern ein völlig anderes Verhalten zeigen und ihre Masse sogar negative Werte annimmt. Wie sie in der neuesten Ausgabe von Physical Review Letters berichten, wurde das Elektron zunächst in einer extrem kurzen Beschleunigungphase von nur 100 Femtosekunden = 0,000 000 000 000 1 Sekunden auf eine Geschwindigkeit von 4 Millionen Stundenkilometern gebracht. Danach bremst das Elektron in einem ähnlichen Zeitraum ab und kehrt dann seine Bewegungsrichtung sogar um. Diese der Kraft entgegengerichtete Beschleunigung lässt sich nur durch eine negative träge Masse des Teilchens erklären.

In den Experimenten werden Elektronen in dem Halbleiterkristall Galliumarsenid durch einen extrem kurzen elektrischen Impuls beschleunigt, dessen Feldstärke 30 Millionen Volt pro Meter beträgt. Gleichzeitig wird mit hoher Präzision die Geschwindigkeit der Elektronen als Funktion der Zeit gemessen. Der Zeitraum des elektrischen Impulses beträgt nur 300 Femtosekunden. Diese extrem kurze Dauer ist erforderlich, da sonst der Kristall zerstört werden kann.

Dieses neue Ergebnis stimmt mit Berechnungen überein, die der Nobelpreisträger Felix Bloch vor mehr als 80 Jahren durchführte. Es eröffnet einen bisher nicht zugänglichen Bereich des Ladungstransports, der neue Perspektiven für zukünftige Bauelemente der Mikroelektronik aufzeigt. Die hier beobachteten Bewegungsfrequenzen liegen im Terahertzbereich (1 THz = 1000 GHz = 10 hoch 12 Hz) und damit etwa 1000 mal höher als die Taktrate der neuesten PC Generation.

[1] Isaac Newton: Axiomata, sive leges motus, Philosophiae Naturalis Principia Mathematica (1687). Siehe auch http://de.wikipedia.org/wiki/Newtonsche_Gesetze

Veröffentlichung: W. Kuehn et al., Phys. Rev. Lett. 104, 146602 (2010)

Ansprechpartner:
Dr. Michael Wörner (Tel. 030-6392-1470, email: woerner@mbi-berlin.de)
Prof. Klaus Reimann (Tel. 030-6392-1476, email: reimann@mbi-berlin.de)
Prof. Thomas Elsaesser (Tel. 030-6392-1400, email: elsasser@mbi-berlin.de)

Christine Vollgraf | idw
Weitere Informationen:
http://de.wikipedia.org/wiki/Newtonsche_Gesetze
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spintronik: Forscher zeigen, wie sich nichtmagnetische Materialien magnetisch machen lassen
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Erster radioastronomischer Nachweis eines extrasolaren Planetensystems um einen Hauptreihenstern
05.08.2020 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

Eine entscheidende Ergänzung zum Stanzen von Kontakten erarbeiteten Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT. Die Aachener haben im Rahmen des EFRE-Forschungsprojekts ScanCut zusammen mit Industriepartnern aus Nordrhein-Westfalen ein hybrides Fertigungsverfahren zum Laserschneiden von dünnwandigen Metallbändern entwickelt, wodurch auch winzige Details von Kontaktteilen umweltfreundlich, hochpräzise und effizient gefertigt werden können.

Sie sind unscheinbar und winzig, trotzdem steht und fällt der Einsatz eines modernen Fahrzeugs mit ihnen: Die Rede ist von mehreren Tausend Steckverbindern im...

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationstage 2020 – digital

06.08.2020 | Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Türsteher im Gehirn

06.08.2020 | Biowissenschaften Chemie

Kognitive Energiesysteme: Neues Kompetenzzentrum sucht Partner aus Wissenschaft und Wirtschaft

06.08.2020 | Energie und Elektrotechnik

Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

06.08.2020 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics