Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanostrukturen als Wegweiser für effiziente Laser-Protonen-Beschleuniger

15.03.2017

Nanostrukturierte Oberflächen haben vielfältige Anwendungen. Unter anderem werden sie eingesetzt, um gezielt die Absorption von Licht zu erhöhen, z. B. in der Photovoltaik. Aber auch in der Laserbeschleunigung von Protonen wird dieser Ansatz interessiert verfolgt, verspricht der Einsatz von nanostrukturierten Targets bei gleicher Laserenergie doch deutlich höhere Protonenenergien und -zahlen. Wie bei jeder anderen neuen Technologie ist auch hier ein hoher Wirkungsgrad entscheidend für einen möglichen zukünftigen Einsatz. Forscher am Max-Born-Institut (MBI) in Berlin haben jetzt untersucht, unter welchen Bedingungen der Einsatz von Nanostrukturen in der Laser-Ionen-Beschleunigung lohnt.

Wird ein ultrakurzer Laserimpuls (˜30 fs, >1 J) auf eine Festkörperfolie fokussiert, so dass relativistische Intensitäten (>10¹⁸ W/cm²) erreicht werden, wird die Materie durch Feldionisation sofort in einen Plasmazustand überführt. Die Elektronen werden im Laserfeld auf relativistische Energien beschleunigt.


Abb. 1: Laserbeschleunigte Ionen, sichtbar gemacht in einer Wilsonkammer.

Foto: MBI


Typische Rasterelektronenmikroskopieaufnahme der strukturierten Titanoberfläche (oben). Die Kα Ausbeute des strukturierten Targets (a) ist über den gesamten untersuchten Intensitätsbereich deutlich gegenüber dem unstrukturierten Target erhöht und zeigt, dass die Nanostrukturen auch bei höchsten Intensitäten wirken. Dahingegen sieht man, dass sich die Konversionseffizienzen (Energietransfer in schnelle Protonen) (b, logarithmische Skala) und die maximalen Protonenenergien (c) der beiden Targets für höchste Intensitäten angleichen. Abb.: MBI

Während die schnellsten Elektronen das Target verlassen können, sind die etwas langsameren (immer noch relativistischen) Elektronen im Coulombpotential des (jetzt) positiv geladenen Targets gefangen und oszillieren in diesem Feld.

Sie bilden eine dynamische Schicht (sheath) aus, die mit der Targetoberfläche ein elektrisches Feld von etlichen Megavolt pro Mikrometern aufbaut, in dem positive Ionen (z.B. Protonen und Kohlenstoffionen aus der Oberflächenkontaminationsschicht) extrem beschleunigt werden. Diesen Prozess nennt man TNSA (target normal sheath acceleration). Abb. 1 zeigt die Aufnahme eines solchen Protonenbunches.

Die Idee hinter dem Einsatz von nanostrukturierten Oberflächen ist nun denkbar einfach: Die Nanostrukturen erhöhen die Laserabsorption, d. h. es werden mehr und höher energetische Elektronen erzeugt, die wiederum mehr Protonen zu höheren Energien beschleunigen können.

Es gibt aber auch andere Wege, um den TNSA Mechanismus zu optimieren - insbesondere zählt hierzu die Optimierung des Plasmagradienten, d. h. des Dichteprofils des Targets. Die angewendeten Laserintensitäten sind so groß, dass die Ionisation des Targets nicht erst im Peak des Laserimpulses auftritt, sondern während des Pulsanstiegs startet. Das vorionisierte Plasma dehnt sich aus, die Dichte wird dadurch geringer. Der Plasmagradient ist daher maßgeblich durch die genaue zeitliche Pulsstruktur bestimmt.

Das Team um Dr. Matthias Schnürer vom Max-Born-Institut in Berlin hat nun untersucht, unter welchen Bedingungen der Einsatz von nanostrukturierten Targets vorteilhaft ist. Dazu haben die Physiker die Targets in-situ mit dem Laser strukturiert.

Diese Methode der Erzeugung laser-Induzierter periodischer Oberflächenstrukturen ist besonders einfach und erlaubt im Prinzip, wie die Physiker betonen, auch die Entwicklung eines hochrepetitierenden Targetsystems. In einem ersten Schritt wird die Oberfläche mit dem abgeschwächten Laser strukturiert (etwa 20 Impulse). Eine Rasterelektronenmikroskopieaufnahme der so strukturierten Fläche ist in Abb. 2 zu sehen. Strukturanalyse und Simulationen zeigen, dass die Strukturen nahezu optimale Parameter für eine maximale Laserabsorption aufweisen.

Im folgenden Schritt wird dann der volle Laserpuls auf diese strukturierte Fläche fokussiert. Dr. Andrea Lübcke und ihre Kollegen haben diese Untersuchungen für verschiedene Laserintensitäten und bei einem Laserkontrast durchgeführt, der bei maximaler Laserintensität optimal ist. Zunächst konnte gezeigt werden, dass die Nanostrukturen bei diesen Kontrastverhältnissen auch bei höchsten Intensitäten zu einer Erhöhung der Laserabsorption und damit der Kα-Ausbeute führen (siehe Abb. 2a).

Für relativ kleine Intensitäten konnten die Nanostrukturen sowohl die Konversionseffizienz als auch die Protonenenergie deutlich gegenüber dem unstrukturierten Target erhöhen. So wurde z. B. bei ˜5x10¹⁷ W/cm² die maximale Protonenenergie vervierfacht, die Konversionseffizienz von Laser- in Protonenenergie wurde sogar um mehr als 2 Größenordnungen erhöht. Für die höchsten Laserintensitäten und den gegebenen optimalen Laser-Plasma-Parametern wurde allerdings kein signifikanter Nutzen der Nanostrukturen für die Protonenbeschleunigung gemessen (Abb. 2b, c).

Die Physiker der Projektgruppe spekulieren, dass es einen Effekt geben könnte, der bei optimalen Laser-Plasma-Bedingungen den zusätzlichen Energietransfer in die schnellsten Elektronen beschränkt. Vollkommen überrascht ist das Team nicht von diesen Ergebnissen: Wie bei vielen Optimierungsproblemen, gibt es verschiedene Optimierungsansätze.

Die Kombination von mehreren von ihnen führt in aller Regel nicht zu noch besseren Ergebnissen. Jedoch können diese Experimente in einem extremen Parameterbereich nicht in allen Facetten theoretisch simuliert werden. Somit ist es entscheidender Verdienst dieser Arbeit, klar gestellt zu haben, wann der Einsatz von Nanostrukturen lohnt und in welche Richtung neue theoretische Untersuchungen initiiert werden können.

Originalpublikation: Scientific Reports 7, 44030 (2017) doi:10.1038/srep44030
Prospects of target nanostructuring for laser proton acceleration
Andrea Lübcke, Alexander A. Andreev, Sandra Höhm, Rüdiger Grunwald, Lutz Ehrentraut, Matthias Schnürer

Kontakt:
Max-Born-Institut im Forschungsverbund Berlin e.V.
Max-Born-Straße 2A
12489 Berlin

Dr. Andrea Lübcke
Tel. +49 30 6392 1247
luebcke@mbi-berlin.de

Dr. Matthias Schnürer
Tel. +49 30 6392 1315
schnuerer@mbi-berlin.de

Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schatzkammer Datenbank: Digitalisierte Schwingfestigkeitskennwerte sparen Entwicklungszeit

16.08.2018 | Informationstechnologie

Interaktive Software erleichtert Design komplexer Gussformen

16.08.2018 | Informationstechnologie

Fraunhofer HHI entwickelt Quantenkommunikation für jedermann im EU-Projekt UNIQORN

16.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics