Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanomagnete im Gleichschritt - Moleküle als Bausteine für Quantencomputer?

09.10.2008
Die Quantentheorie hat vor hundert Jahren die Physik revolutioniert; nun soll sie Einzug in unsere Computer halten. Ihre Möglichkeiten reichen weit über die klassische Physik hinaus und führten zur Entwicklung neuartiger Rechenmethoden.

Mit diesen Algorithmen ist es möglich, spezielle Probleme anzupacken, die mit klassischen Computern unlösbar sind. An der Verwirklichung eines solchen Quantencomputers wird auf den verschiedensten Wegen weltweit intensiv gearbeitet. Ein viel versprechender Ansatz verwendet als kleinste Bauteilchen molekulare Nanomagnete. Wissenschaftlern vom 1. Physikalischen Institut der Universität Stuttgart ist es nun zum ersten Mal gelungen, an Molekülen mit großem Spin (einer Art Kreisel) nachzuweisen, dass die Moleküle für Sekundenbruchteile im Gleichschritt laufen*). Diese als Quantenkohärenz bezeichnete Eigenschaft könnte der Startschuss sein, um den Quantencomputer schnell zu realisieren.


Struktur des verwendeten Moleküls mit der Spinrichtung der vier Eisenatome. Durch einen Mikrowellenpuls werden die Spins um bestimmte Winkel gekippt. Quelle: 1. Physikalisches Institut, Universität Stuttgart

Eine der größten Herausforderungen beim Bau eines Quantencomputers ist das Material, aus dem die Bits gemacht werden. Denn die quantenmechanischen Zustände, die während des Rechenvorgangs verwendet werden, müssen lange genug stabil sein. Sonst geht die Information verloren, bevor die Berechnung abgeschlossen ist - wie bei einem Rechenbrett aus Eiswürfeln, die unter den Fingern schmelzen. Solche stabilen Zustände können beispielsweise mit Hilfe von Elektronen realisiert werden, denn diese kleinen Teilchen besitzen die quantenmechanische Eigenschaft des 'Spins'. Ein wirklicher Computer kann jedoch nicht aus einzelnen Elektronen bestehen. Andererseits sind in realen Materialien die Quanteneigenschaften nur sehr schwer zu beobachten.

Das von der Stuttgarter Forschergruppe verwendete Material ist ein so genannter Einzelmolekülmagnet. Das Einzigartige an diesen komplexen, aber trotzdem kleinen und reproduzierbar herstellbaren Teilchen besteht darin, dass jedes Molekül für sich bereits magnetische Eigenschaften besitzt. Diese erhält es durch magnetische Ionen, welche an festen Plätzen im Molekül sitzen. Die Elektronen der einzelnen Ionen stehen untereinander in Wechselwirkung; wodurch sich bei niedrigen Temperaturen ein Zustand mit einem stabilen Spin einstellt. Für ihre Experimente verwendeten die Physiker ein neuartiges Molekül mit vier Eisenionen. Ihr stabiler Spin ist zehnmal größer als der eines Elektrons und kann verschiedene Zustände mit unterschiedlicher Energie einnehmen.

Die Moleküle wurden mit extrem kurzen Mikrowellenpulsen beschossen. Wie bei einem Gewehrschuss in den Bergen ist dabei ein Echo zu hören, aus dessen Stärke man darauf schließen kann, wie sich die Spins in der Zwischenzeit verhalten haben. Bei diesen Versuchen wurde deutlich, dass die Spins in den Molekülen für Sekundenbruchteile im Gleichschritt laufen. Diese als Kohärenz bezeichnete Eigenschaft ist vergleichbar mit dem Verhalten des Laserlichts, das diesem seine besonderen Eigenschaften verleiht. Zusätzlich wurden sogenannte Rabi-Oszillationen gemessen: Anschaulich gesprochen wurden die Spins der Moleküle dabei gleichzeitig um bestimmte Winkel gedreht. Es war sogar möglich, mehrere vollständige Rotationen durchzuführen, was man bislang für unmöglich hielt.

Bevor ein wirklicher Quantencomputer mit molekularen Magneten gebaut werden kann, müssen allerdings noch weitere Hürden genommen werden. Zuerst müssen die Moleküle auf einer Oberfläche angeordnet werden. Dann müssen sie einzeln adressiert, programmiert und ausgelesen werden. Prinzipiell ist dies möglich, bisher benötigt man aber noch eine große Anzahl von Molekülen, um das Mikrowellenecho 'hören' zu können.

*) Veröffentlichung: Christoph Schlegel, Joris van Slageren, Maria Manoli, Euan
K. Brechin und Martin Dressel: Direct observation of quantum coherence in single-molecule magnets, Physical Review Letters, vol. 101, no. 147203 (3rd October 2008)
Weitere Informationen bei Prof. Dr. Martin Dressel und PD Dr. Joris van Slageren, 1. Physikalisches Institut, Tel. 0711/685-64947, e-mail:

dressel@pi1.physik.uni-stuttgart.de, slageren@pi1.physik.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics