Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle mit Schalter: Neue Werkzeuge für die superauflösende Mikroskopie

02.02.2017

Bayreuther Wissenschaftler berichten in ‚Scientific Reports‘ über das zielgerichtete Schalten einzelner photochromer Moleküle. Die neuen Erkenntnisse eröffnen der Forschung neue Möglichkeiten, um die Strukturen von komplexen Molekülen – beispielsweise auch von biologischen Systemen – aufzuklären.

Photochrome Moleküle im Fokus der Grundlagenforschung


Ein photochromes Molekül kann wie ein Lichtschalter durch einen Laserstrahl ein- oder ausgeschaltet werden. Von der Wellenlänge hängt es ab, welche von zwei möglichen Strukturen das Molekül annimmt.

Grafik: Johannes Maier M.Sc.; zur Veröffentlichung frei.


Physik-Doktorand Johannes Maier M.Sc. hat zu den neuen Forschungsergebnissen wesentlich beigetragen. Er ist Mitglied der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT).

Foto: Christian Wißler; zur Veröffentlichung frei.

Schon seit geraumer Zeit befasst sich die Grundlagenforschung mit photochromen Molekülen. Ähnlich wie der Schalter eines elektrischen Geräts in die „Ein“- oder in die „Aus“-Position versetzt werden kann, lässt sich ein photochromes Molekül so steuern, dass es zwischen zwei Zuständen hin- und herwechselt. Diese Steuerung geschieht durch Licht.

Von der Wellenlänge des Lichts, das auf das Molekül trifft, hängt es ab, welche von zwei möglichen Strukturen das Molekül annimmt. Schon länger ist bekannt, wie sich dieser Wechsel zwischen zwei Zuständen sichtbar machen lässt – nämlich dadurch, dass das photochrome Molekül mit stark fluoreszierenden Molekülen gekoppelt wird. Nur wenn es sich in der „Ein“-Position befindet, leuchten seine Partnermoleküle, die sogenannten Fluorophore, kräftig auf.

Vor diesem Hintergrund sind photochrome Moleküle nicht zuletzt für die superauflösende optische Mikroskopie von großem Interesse. Denn um Strukturen mit einem optischen Mikroskop sichtbar machen zu können, die kleiner als 200 Nanometer sind, benötigt die Forschung einzelne Moleküle, die in der Lage sind, zwischen einem sichtbaren „Ein“- und einem „Aus“-Zustand hin- und herzuwechseln.

Diese Moleküle können dann wie Sonden in die zu untersuchenden Strukturen eingeführt werden, die es sichtbar zu machen gilt. Besonders vorteilhaft ist es, wenn der Wechsel zwischen den beiden Zuständen nicht bloß zufällig eintritt, sondern im Labor gezielt hervorgerufen werden kann. Photochrome Moleküle scheinen daher – zunächst einmal – ideale Werkzeuge zu sein, um Fortschritte in der superauflösenden Mikroskopie voranzutreiben. Der lichtgesteuerte Wechsel zwischen zwei klar definierten, sichtbaren Zuständen ließe sich so auf der Ebene von Einzelmolekülen und damit im kleinstmöglichen Maßstab ausnutzen.

Spontanes Blinken oder gezielte Steuerung durch Licht?

Allerdings gibt es ein grundsätzliches Problem, das dieser Anwendung im Weg steht. Die Fluorophore, die an ein photochromes Molekül gekoppelt sind und dessen Zustandswechsel anzeigen, haben die Eigenschaft, dass sie auch spontan aufleuchten – unabhängig davon, im welchem Zustand sich das photochrome Molekül befindet. Dieses Phänomen wird in der Forschung als ‚stochastisches Blinken‘ bezeichnet. Solange es aber völlig unsicher ist, ob das Aufleuchten der Fluorophore in dieser Weise zufällig geschieht oder durch eine Strukturänderung des photochromen Moleküls verursacht wird, kann man das „Ein“- und „Ausschalten“ dieses Moleküls nicht zielgerichtet hervorrufen. Man gewinnt dann für die superauflösende optische Mikroskopie keinen Vorteil gegenüber den heute überwiegend verwendeten Farbstoffen.

An genau diesem Punkt ist die Forschergruppe um Prof. Dr. Jürgen Köhler und Prof. Dr. Mukundan Thelakkat an der Universität Bayreuth jetzt einen entscheidenden Schritt weitergekommen. Sie hat das stochastische Blinken der Fluorophore einerseits und ihr Aufleuchten im Falle einer Strukturänderung des photochromen Moleküls andererseits genauer untersucht.

Dabei konnten die Wissenschaftler feststellen, dass das Aufleuchten durch eine Betätigung des ‚Schalters‘ – nämlich einen gezielten Lichtstrahl auf das photochrome Molekül – mit einer Wahrscheinlichkeit zwischen 70 und 90 Prozent ausgelöst wurde. In einigen speziellen Fällen lag diese Wahrscheinlichkeit sogar bei 95 Prozent. „Dieser Forschungserfolg war nur möglich, weil Experimentalphysiker und Polymerchemiker auf dem Bayreuther Campus eng zusammenarbeiten“, freut sich Prof. Köhler. „So konnten wir gemeinsam neue Molekülverbindungen in relativ kurzer Zeit entwerfen, synthetisieren und im Hinblick auf ihre photophysikalischen Eigenschaften testen.“

Die Bayreuther Forscher haben ihre jetzt in „Scientific Reports“ veröffentlichten Ergebnisse durch Untersuchungen an einer solchen neuen Molekülverbindung erzielt. Hierbei handelt es sich um eine Triade, ein Dreierbündnis von Molekülen. Im Zentrum befindet sich ein photochromes Molekül, genauer: ein Molekül aus der Gruppe der Dithienyl-Cyclopentene (DCP). Die chemische Bezeichnung lautet „1,2-bis(2-methyl-5-phenyl-3-thenyl-perfluorocyclopenten“. An dieses Molekül sind, zwei Armen ähnlich, zwei stark fluoreszierende Moleküle aus der Gruppe der Perylenbisimide (PBI) angehängt.

Auf dem Weg zu neuen bildgebenden Systemen

Einzelne photochrome Moleküle können jetzt nicht nur mit Licht ein- und ausgeschaltet werden, sondern die dadurch erzielten sichtbaren Effekte lassen sich erstmals auch mit hoher Wahrscheinlichkeit als solche identifizieren. Dadurch eröffnen sich neue Anwendungsmöglichkeiten in der Forschung. „Die neuen Triaden können beispielsweise wertvolle Unterstützung leisten, wenn es darum geht, die Strukturen von komplexen Molekülen – beispielsweise auch von biologischen Systemen – aufzuklären“, erläutert Prof. Köhler. „Die Vergabe des Chemie-Nobelpreises 2014 an Eric Betzig, William E. Moerner und Stefan Hell hat den internationalen Stellenwert dieses Forschungsgebiets, auf dem Physiker und Chemiker kooperieren, erneut deutlich gemacht“, so der Bayreuther Physiker.

Veröffentlichung:

Johannes Maier, Martti Pärs, Tina Weller, Mukundan Thelakkat und Jürgen Köhler,
Deliberate Switching of Single Photochromic Triads,
Scientific Reports 7:41739, DOI: 10.1038/srep41739

Kontakt:

Prof. Dr. Jürgen Köhler
Experimentalphysik IV
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 / 55-4000 und 55-4001
E-Mail: Juergen.Koehler@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superauflösende Mikroskopie - Neue Markierungssonden im Nanomaßstab
21.08.2018 | Ludwig-Maximilians-Universität München

nachricht Quantenverschränkung erstmals mit Licht von Quasaren bestätigt
20.08.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Linsen im Fokus

21.08.2018 | Seminare Workshops

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungsnachrichten

Woher Muskeln wissen, wie spät es ist

21.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics