Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meteoriteneinschlag im Nano-Format

29.08.2016

Mit energiereichen Ionen lassen sich erstaunliche Nanostrukturen auf Kristalloberflächen erzeugen. Experimente und Berechnungen der TU Wien können diese Effekte nun erklären.

Ein Meteorit, der in flachem Winkel auf die Erde trifft, kann gewaltige Verwüstungen anrichten: Er schrammt über die Erdoberfläche und legt oft eine lange Strecke zurück, bevor er sich endgültig in den Boden bohrt.


Nanostrukturen nach dem Ionenbeschuss: Der Pfeil zeigt die Richtung der Ionen an

TU Wien


Elisabeth Gruber im Labor an der TU Wien

TU Wien

Dort wo er aufschlägt, kann er das Gestein vaporisieren und große Materialmengen aufschmelzen. Am Ende bleibt nicht nur ein Krater oder ein Schutthaufen zurück, sondern auch noch eine ausgedehnte Spur der Verwüstung, vor und hinter der Einschlagstelle.

Ganz ähnlich verhält es sich mit schweren Ionen, die mit hoher Geschwindigkeit auf eine Kristalloberfläche geschossen werden – allerdings auf mikroskopischer Skala. Am Institut für Angewandte Physik der TU Wien untersucht das Team von Prof. Friedrich Aumayr, welche Strukturen sich bilden lassen, wenn man Ionen in flachem Winkel auf Kristalle schießt.

Rillen und Berge

„Wenn wir die Oberfläche der Kristalle mit einem Rasterkraftmikroskop untersuchen, dann erkennen wir sehr deutliche Parallelen zwischen den Spuren der Ionen-Einschläge und einem Meteoriten-Impakt“, sagt Elisabeth Gruber, Dissertantin im Team von Friedrich Aumayr.

„Das unter sehr flachem Winkel einfallende Projektil gräbt zunächst eine Rille in den Kristall, die mehrere hundert Nanometer lang sein kann. Rechts und links davon werden winzige Hügel aufgehäuft, die sogenannten Nanohillocks.“ Dort, wo das Ion dann endgültig unter der Kristalloberfläche verschwindet, bildet sich eine besonders hohe Erhebung. Dahinter kann man den Weg des Projektils noch ein Stück anhand einer Oberflächenerhebung verfolgen, bis es schließlich tiefer in den Kristall eindringt und dann zum Stillstand kommt.

Das klingt intuitiv recht einleuchtend – als könnte man sich Ionen mit hoher Energie vorstellen wie kleine, elektrisch geladene Pistolenkugeln. Doch in Wirklichkeit ist es alles andere als selbstverständlich, dass sich Objekte der Nano-Welt ähnlich verhalten wie große Alltagsobjekte. Wenn es darum geht, wie einzelne Atome ihre Energie untereinander austauschen hat schließlich auch die Quantenphysik ein gewichtiges Wort mitzureden.

„Bei der Wechselwirkung energiereicher Ionen mit Kristalloberflächen – in unserem Fall Kalziumfluorid – können viele verschiedene physikalische Effekte eine Rolle spielen“, sagt Friedrich Aumayr. „So können etwa einzelne Elektronen ihren Energiezustand wechseln, dadurch Energie mit Atomen der Umgebung austauschen und so im Kristall Schwingungen anregen - die sogenannten Phononen. All das muss man berücksichtigen, wenn man diese Art der Nanostrukturbildung untersucht.“

Schmelzen und Verdampfen

Um die Mechanismen genau zu verstehen, die zur Bildung der Nanostrukturen auf der Kristalloberfläche führen, entwickelte das Team in Zusammenarbeit mir deutschen Kollegen umfangreiche Simulationsrechnungen. „Wir sehen dadurch, wie stark sich die Oberfläche an welchen Stellen aufheizt“, erklärt Elisabeth Gruber. „In manchen Bereichen wird es so heiß, dass das Material aufgeschmolzen wird, an bestimmten Stellen kann es sogar verdampfen. Wenn wir wissen, wie groß diese Regionen jeweils sind, können wir auch gut vorhersagen, welche Nanostrukturen sich auf der Oberfläche bilden.“

Solche Forschungsarbeiten dienen nicht nur dazu, besser zu verstehen, wie man Nanostrukturen auf Oberflächen gezielt herstellen kann. Es ist auch wichtig zu untersuchen, wie Materialien durch unerwünschten Ionenbeschuss geschädigt werden. „Kalziumfluorid wird oft als Isolator in der Halbleitertechnik verwendet“, sagt Friedrich Aumayr. „Auch unter extremen Bedingungen, zum Beispiel in Satelliten, die der kosmischen Höhenstrahlung ausgesetzt sind, soll die Elektronik noch funktionieren.“ Wenn das Kalziumfluorid durch Ionenbeschuss durchlöchert wird, kann es im schlimmsten Fall zu einem Kurzschluss und zu einer Zerstörung des Bauteils kommen. Daher ist es wichtig, die Wechselwirkung zwischen Kristalloberflächen und Ionen genau zu untersuchen.

Originalpublikation:
E. Gruber et al., Journal of Physics: Condensed Matter 28 (2016) 405001

Sehr ähnliche Effekte können auch mit langsamen hochgeladenen Ionen erzielt werden, wie die Wiener Gruppe in einer demnächst in der Fachzeitschrift Physical Review Letters erscheinenden Arbeit zeigt.
A.S. El-Said et al., Tuning the fabrication of nanostructures by low-energy highly charged ions, Physical Review Letters accepted for publication 24.08.2016

Rückfragehinweise:
Univ.Prof. Friedrich Aumayr
Technische Universität Wien
Institut für Angewandte Physik
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13430
friedrich.aumayr@tuwien.ac.at

Dipl.-Ing. Elisabeth Gruber
Technische Universität Wien
Institut für Angewandte Physik
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13435
elisabeth.gruber@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/meteor weitere Bilder
http://dx.doi.org/10.1088/0953-8984/28/40/405001 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Was die Tiefsee über die Sterne verrät
18.12.2018 | Technische Universität Berlin

nachricht Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
17.12.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo

18.12.2018 | Biowissenschaften Chemie

Notsignal im Zellkern – neuartiger Mechanismus der Zellzykluskontrolle

18.12.2018 | Biowissenschaften Chemie

Neue Methode für sichere Brücken

18.12.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics