Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materie-Rätsel bleibt weiter spannend: Fundamentale Eigenschaft von Proton und Antiproton identisch

19.10.2017

Magnetische Kraft von Antiprotonen auf neun signifikante Stellen genau gemessen – 350-mal genauer als bisher

Die Suche geht weiter. Noch immer wurde kein Unterschied zwischen Protonen und Antiprotonen gefunden, der die Existenz von Materie in unserem Universum erklären könnte. Dabei ist es Physikern der BASE-Kollaboration am Forschungszentrum CERN gelungen, die magnetische Kraft von Antiprotonen mit einer fast unglaublichen Genauigkeit zu messen. Doch auch diese Daten geben keinen Aufschluss darüber, weshalb sich im frühen Universum Materie gebildet hat, denn eigentlich hätten sich Teilchen und Antiteilchen komplett vernichten müssen. Die neuesten BASE-Messungen zeigen stattdessen eine große Übereinstimmung zwischen Protonen und Antiprotonen und bestätigen das Standardmodell der Teilchenphysik. Weltweit sind Wissenschaftler mit unterschiedlichen Methoden auf der Suche nach einem Unterschied und sei er auch noch so klein. Das Materie-Antimaterie-Ungleichgewicht im Universum gilt als eines der größten Rätsel in der Physik.


BASE-Experiment am Antiprotonen-Entschleuniger am CERN in Genf: Zu sehen ist die Kontrollperipherie, der supraleitende Magnet, in dem sich die Penningfalle befindet, und das Antiproton-Transfer-Strahlrohr.

Foto/©: Stefan Sellner, Fundamental Symmetries Laboratory, RIKEN, Japan


BASE-Penningfallensystem zur Messung des magnetischen Moments des Antiprotons

Foto/©: Stefan Sellner, Fundamental Symmetries Laboratory, RIKEN, Japan

Die BASE-Kollaboration am europäischen Forschungszentrum CERN besteht aus Wissenschaftlerinnen und Wissenschaftlern des japanischen Forschungszentums RIKEN, des Max-Planck-Instituts für Kernphysik in Heidelberg, der Johannes Gutenberg-Universität Mainz (JGU), der Universität Tokio, der GSI Darmstadt, der Universität Hannover und der PTB Braunschweig. Die BASE-Forscher vergleichen die fundamentalen Eigenschaften von Protonen und Antiprotonen mit höchster Präzision, in der vorliegenden Studie das magnetische Moment, das man sich etwa wie einen Miniatur-Stabmagneten vorstellen kann. Gemessen wird der sogenannte g-Faktor, der die magnetische Feldstärke angibt. "Die Frage ist praktisch, ob das Antiproton genauso magnetisch ist wie das Proton", erklärt Stefan Ulmer, Sprecher der BASE-Gruppe. "Das ist das Rätsel, dem wir auf der Spur sind."

Die BASE-Gruppe hatte dazu bereits im Januar dieses Jahres für das Antiproton eine hochgenaue Messung des g-Faktors veröffentlicht, die nun noch übertroffen wird. Mit der jetzigen Hochpräzisionsmessung wurde der g-Faktor auf neun signifikante Stellen genau bestimmt. Das ist in etwa so, als ob man den Erdumfang mit einer Genauigkeit von vier Zentimetern bestimmen wollte. Der Wert von 2,7928473441(42) ist 350-mal genauer als das im Januar publizierte Ergebnis. "Diese Steigerung in einer so kurzen Zeit war nur dank einer komplett neuen Methode möglich", so Ulmer. Dazu haben die Wissenschaftler erstmals zwei Antiprotonen verwendet und sie mit zwei Penningfallen analysiert.

... mehr zu:
»Antiproton »Antiteilchen »CERN »GSI »Protonen »Teilchen

Antiprotonen bis zur Analyse ein Jahr lang gespeichert

Antiprotonen werden am CERN künstlich erzeugt und von den Forschern für Versuche in einer Reservoirfalle gespeichert. Die Antiprotonen für das jetzige Experiment stammten aus dem Jahr 2015 und wurden zwischen August und Dezember 2016 vermessen – auch dies eine kleine Sensation, da eine so lange Antimaterie-Speicherzeit bislang noch nicht dokumentiert ist. Normalerweise würden Antiprotonen in kürzester Zeit in Kontakt mit Materie annihilieren, beispielsweise in der Raumluft. Die Speicherung erfolgte für 405 Tage in einem Vakuum, das zehnmal weniger Teilchen enthielt als der interstellare Raum. Insgesamt wurden 16 Antiprotonen verbraucht, die teilweise auf eine Temperatur nahe dem absoluten Nullpunkt bei minus 273 Grad Celsius gekühlt wurden.

Das neue Prinzip beruht auf dem Zusammenspiel von zwei Penningfallen. Solche Fallen halten die Antiprotonen durch elektrische und magnetische Felder fest. Die bisherigen Messungen waren durch eine starke magnetische Inhomogenität in der Analysefalle limitiert. Um diese Schranke zu durchbrechen, fügten die Wissenschaftler eine zweite Falle mit einem Magnetfeld hoher Homogenität hinzu. "Damit haben wir eine Methode angewendet, die an der Johannes Gutenberg-Universität Mainz entwickelt wurde und die Messungen mit höherer Präzision ermöglicht", erklärt Ulmer. "Diese Messung mit Antiprotonen zum Laufen zu bringen ist extrem schwierig und wir haben seit zehn Jahren daran gearbeitet. Der schlussendliche Durchbruch ist uns durch die bahnbrechende Idee, die Messung mit zwei Teilchen durchzuführen, gelungen." Gemessen werden die Larmorfrequenz und die Zyklotronfrequenz, aus denen sich der g-Faktor ergibt.

Der so ermittelte g-Faktor für das Antiproton wird mit dem g-Faktor des Protons verglichen, den die BASE-Forscher 2014 mit der bislang höchsten Genauigkeit ermittelt haben – ohne dass ein Unterschied zwischen den beiden zu finden ist. Diese Übereinstimmung stellt eine Bestätigung der CPT-Symmetrie dar, wonach im Universum eine fundamentale Symmetrie zwischen Teilchen und Antiteilchen besteht. "In all unseren Beobachtungen verhalten sich Materie und Antimaterie komplett symmetrisch, weshalb es das Universum so gar nicht geben dürfte", so Christian Smorra, Erstautor der Studie. "Ganz offensichtlich besteht aber eine Asymmetrie, wir verstehen nur den Unterschied nicht. Woher kommt diese Symmetriebrechung?"

Die Motivation der BASE-Wissenschaftler ist es nun, durch noch genauere Messungen der Eigenschaften sowohl des Protons als auch des Antiprotons eine Antwort auf diese Frage zu finden. Die BASE-Kollaboration will dazu in den nächsten Jahren weitere innovative Methoden entwickeln und das jetzige Ergebnis noch toppen.

Fotos:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_BASE_antiprotonen-entsch...
BASE-Experiment am Antiprotonen-Entschleuniger am CERN in Genf: Zu sehen ist die Kontrollperipherie, der supraleitende Magnet, in dem sich die Penningfalle befindet, und das Antiproton-Transfer-Strahlrohr.
Foto/©: Stefan Sellner, Fundamental Symmetries Laboratory, RIKEN, Japan

http://www.uni-mainz.de/bilder_presse/08_physik_quantum_BASE-penningfallensystem...
BASE-Penningfallensystem zur Messung des magnetischen Moments des Antiprotons
Foto/©: Stefan Sellner, Fundamental Symmetries Laboratory, RIKEN, Japan

Veröffentlichung:
Christian Smorra et al.
A parts-per-billion measurement of the antiproton magnetic moment
Nature, 19. Oktober 2017
DOI: 10.1038/nature24048

Kontakt und weitere Informationen:
Dr. Stefan Ulmer
Chief Scientist, Ulmer Fundamental Symmetries Laboratory
RIKEN
2-1 Hriosawa, Wako, 351-0198 Saitama, JAPAN
Sprecher BASE-Kollaboration
CERN
1211 Genf, SCHWEIZ
Tel. +41 75 411 9072
E-Mail: stefan.ulmer@cern.ch
http://ulmerfsl.riken.jp/index.html

Prof. Dr. Jochen Walz
Quanten-, Atom- und Neutronenphysik (Quantum)
Institut für Physik
Johannes Gutenberg-Universität Mainz, 55099 Mainz
Tel. +49 6131 39-25976
Fax +49 6131 39-25179
E-Mail: Jochen.Walz@uni-mainz.de
http://www.quantum.physik.uni-mainz.de

Prof. Dr. Klaus Blaum
Abteilung „Gespeicherte und gekühlte Ionen“
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1, 69117 Heidelberg
Tel. +49 6221 516-851
Fax +49 6221 516-852
E-Mail: Klaus.Blaum@mpi-hd.mpg.de
https://www.mpi-hd.mpg.de/blaum

Prof. Dr. Christian Ospelkaus
Institut für Quantenoptik, Leibniz Universität Hannover und
Physikalisch-Technische Bundesanstalt, Braunschweig
Welfengarten 1, 30167 Hannover
Tel.: +49 511 762-17644
E-Mail: christian.ospelkaus@iqo.uni-hannover.de

PD Dr. Wolfgang Quint
GSI Helmholtzzentrum für Schwerionenforschung GmbH
Planckstr. 1, 64291 Darmstadt
Tel. +49 6159 712141
E-Mail: w.quint@gsi.de
http://www.gsi.de

Weiterführende Links:
http://base.web.cern.ch/ – BASE: Baryon Antibaryon Symmetry Experiment
http://ulmerfsl.riken.jp/index.html – Ulmer Fundamental Symmetries Laboratory

Weitere Informationen:

http://www.uni-mainz.de/presse/aktuell/101_DEU_HTML.php – Pressemitteilung "Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt" (19.01.2017)
http://www.uni-mainz.de/presse/60921.php – Pressemitteilung "Magnetisches Moment des Protons mit unvergleichlich hoher Genauigkeit gemessen" (30.05.2014)
http://www.uni-mainz.de/presse/46320.php – Pressemitteilung "Erstmals magnetische Eigenschaft an einem einzelnen Proton direkt beobachtet" (21.06.2011)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Antiproton Antiteilchen CERN GSI Protonen Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmische Schlange
20.11.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht InSight: Touchdown auf dem Mars
19.11.2018 | Max-Planck-Institut für Sonnensystemforschung

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics