Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

12.07.2018

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr stabil. Ähnliche Strukturen treten auch in magnetischen Systemen auf.


Ein Gitter magnetischer Wirbel – sogenannter Skyrmionen – existiert auch bei tiefen Temperaturen im chiralen Magneten Die Pfeile repräsentieren die Richtung der lokalen Magnetisierung.

Markus Garst / TU Dresden


Die neue magnetische Phase wurde am SANS-1 der Forschungs-Neutronenquelle Heinz-Maier-Leibnitz (FRM II) entdeckt und charakterisiert. Alfonso Chacon und Dr. Mühlbauer bei Einstellungen am Detektor

Wenzel Schürmann / TUM

In magnetischen Wirbeln ordnen sich die magnetischen Momente kreisförmig an. Diese sogenannten Skyrmionen sind nicht nur für die Grundlagenforschung sehr interessant – aufgrund ihrer Stabilität und geringen Größe könnten sie auch für die Entwicklung zukünftiger Magnetspeicher eine Rolle spielen.

Auch deshalb werden die magnetischen Wirbel aktuell intensiv erforscht. Die Frage, wann und wo sie auftreten, ist von besonderem Interesse. Ein Forscherteam der TU München, der Universität zu Köln und der TU Dresden konnte nun erstmals zeigen, dass magnetische Skyrmionen aufgrund unterschiedlicher Mechanismen mehrfach im gleichen Material auftreten können. In der aktuellen Ausgabe der Fachzeitschrift Nature Physics berichtet es von deren Existenz in dem chiralen Magneten Cu2OSeO3 in der Nähe des absoluten Nullpunkts (-273,15 °C). Dazu muss jedoch ein Magnetfeld in eine bestimmte Raumrichtung angelegt werden.

Kleine Magnetstrukturen für kompakte Magnetspeicher?

„Skyrmionen finden sich normalerweise nur in einem einzelnen Bereich von Parametern, also in einem bestimmten Temperaturbereich oder einem Bereich magnetischer oder elektrischer Feldstärke. So ist das zumindest für alle Materialien, in denen diese bislang beobachtet wurden,“ erläutert Professor Christian Pfleiderer vom Physik-Department der Technischen Universität München, der Leiter des Forschungsprojekts.

„Das bedeutet natürlich eine Einschränkung für die Herstellung und technische Nutzung von Skyrmionen, da sie nur stabil sind, wenn man die exakten physikalischen Parameter, zum Beispiel Druck, Spannung oder Feld, zunächst findet und dann einhält. Jetzt haben wir in ein und demselben Material zwei unterschiedliche Skyrmionphasen entdeckt, die zwei getrennte Parameterbereiche aufweisen. Der neue Mechanismus galt als sehr schwach. Jetzt zeigt sich, dass es wesentlich mehr Möglichkeiten gibt, Skyrmionen zu erzeugen und kontrollieren als wir bisher dachten."

Zweite Skyrmionenphase bei ganz tiefen Temperaturen

Alfonso Chacon entdeckte die neue Phase, als er an der Forschungs-Neutronenquelle der TUM die metastabilen Eigenschaften einer bereits bekannten Skyrmionenphase untersuchte und erklärt: „Dieses metabstabile Verhalten interessiert uns, weil wir daraus die Ursachen und Stärke der Stabilität der magnetischen Wirbel bestimmen können. Dies erlaubt zu verstehen, wie diese erzeugt oder gelöscht werden können. Bei diesen Messungen ist uns die neue Phase dann aufgefallen."

„Bei tiefen Temperaturen spielt die Quantenphysik eine immer größere Rolle“, erläutert Dr. Markus Garst vom Institut für Theoretische Physik der TU Dresden. „Diese beeinflusst auch die physikalischen Eigenschaften der magnetischen Skyrmionen. Unsere Forschungsergebnisse erlauben es uns, Quantenwirbel in Magneten gezielt zu untersuchen.“

„Wir forschen schon seit gut einem Jahrzehnt zu Skyrmionen, am aktuellen Projekt seit etwa anderthalb Jahren, und haben eine tolle und erfolgreiche Zusammenarbeit zwischen den beteiligten Gruppen,“ erklärt Dr. Garst. „Die Münchner Kollegen machten ihre Beobachtungen mit Hilfe von Neutronenstreuung, die es erlaubt, magnetische Strukturen sichtbar zu machen. Wir haben dann in Zusammenarbeit mit Lukas Heinen und Achim Rosch aus Köln die experimentellen Ergebnisse theoretisch erklären können.“ Diese enge Kooperation zwischen Experiment und Theorie machte die wissenschaftliche Entdeckung erst möglich.

Die Entdeckung und Untersuchung dieser magnetischen Phasen gelang an der Kleinwinkelneutronenstreuanlage SANS-1 des Heinz Maier-Leibnitz Zentrums an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München.

Die Forschungsarbeit wurde von der Deutschen Forschungsgemeinschaft im Rahmen der Sonderforschungsbereiche SFB 1143 „Correlated Magnetism: From Frustration To Topology“ und SFB 1238 „Control and Dynamics of Quantum Materials“ sowie des TRR80 „From Electronic Correlations to Functionality“ gefördert. Die Europäische Union förderte das Projekt im Rahmen des ERC-Grants TOPFIT und die TUM Graduate School unterstützte einen Teil der Autoren.

Informationen für Journalisten:
PD Dr. Markus Garst
Institut für Theoretische Physik
Technische Universität Dresden
Tel.: +49 (0) 351 463 32847
E-Mail: markus.garst@tu-dresden.de

Prof. Dr. Christian Pfleiderer
Lehrstuhl für Topologie korrelierter Systeme
Physik-Department
Technische Universität München
Tel.: +49 (0) 89 289-14720
E-Mail: christian.pfleiderer@tum.de

Originalpublikation:

Observation of two independent skyrmion phases in a chiral magnetic material
A. Chacon, L. Heinen, M. Halder, A. Bauer, W. Simeth, S. Mühlbauer, H. Berger, M. Garst, A. Rosch and C. Pfleiderer
Nature Physics (2018)
DOI: 10.1038/s41567-018-0184-y

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der Zeit atomarer Vorgänge auf der Spur
22.02.2019 | Max-Planck-Institut für Kernphysik

nachricht Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst
22.02.2019 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst

Ein internationales Forscherteam unter Beteiligung von Astronomen des Bonner Max-Planck-Instituts für Radioastronomie hat Radioteleskope auf fünf Kontinenten miteinander verknüpft, um das Vorhandensein eines stark gebündelten Materiestrahls, eines sogenannten Jets zu beweisen, der vom Überrest des bisher einzigen bekannten Gravitationswellenereignisses ausgeht, bei dem zwei Neutronensterne miteinander verschmolzen. Bei den Beobachtungen im weltweiten Netzwerk spielte das 100-m-Radioteleskop in Effelsberg eine wichtige Rolle.

Im August 2017 wurde zum ersten Mal die Verschmelzung zweier sehr kompakter Sternüberreste, sogenannter Neutronensterne, beobachtet, deren vorhergehende...

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Materialdesign in 3D: vom Molekül bis zur Makrostruktur

Mit additiven Verfahren wie dem 3D-Druck lässt sich nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsamen Exzellenzcluster „3D Matter Made to Order” wollen Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg die dreidimensionale additive Fertigung auf die nächste Stufe heben: Ziel ist die Entwicklung neuer Technologien, die einen flexiblen, digitalen Druck ermöglichen, der mit Tischgeräten Strukturen von der molekularen bis zur makroskopischen Ebene umsetzen kann.

„Der 3D-Druck bietet gerade im Mikro- und Nanobereich enorme Möglichkeiten. Die Herausforderungen, um diese zu erschließen, sind jedoch ebenso gewaltig“, sagt...

Im Focus: Diamanten, die besten Freunde der Quantenwissenschaft - Quantenzustand in Diamanten gemessen

Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen. Ein Qubit gilt als die Grundeinheit der Quanteninformation. Die Ergebnisse der Studie, die von der Universität Ulm koordiniert wurde, erschienen jüngst in der renommierten Fachzeitschrift Science.

Die Quantentechnologie gilt als die Technologie der Zukunft. Die wesentlichen Bausteine für Quantengeräte sind Qubits, die viel mehr Informationen verarbeiten...

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mobile World Congress: Bundesamt für Strahlenschutz rät zu Handys mit geringem SAR-Wert

22.02.2019 | Veranstaltungen

Unendliche Weiten: Geophysiker nehmen den Weltraum ins Visier

21.02.2019 | Veranstaltungen

Tagung rund um zuverlässige Verbindungen

20.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Zeit atomarer Vorgänge auf der Spur

22.02.2019 | Physik Astronomie

Wie Korallenlarven sesshaft werden

22.02.2019 | Biowissenschaften Chemie

Ökologische Holz-Hybridbauweisen für den Geschossbau

22.02.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics