Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

12.07.2018

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr stabil. Ähnliche Strukturen treten auch in magnetischen Systemen auf.


Ein Gitter magnetischer Wirbel – sogenannter Skyrmionen – existiert auch bei tiefen Temperaturen im chiralen Magneten Die Pfeile repräsentieren die Richtung der lokalen Magnetisierung.

Markus Garst / TU Dresden


Die neue magnetische Phase wurde am SANS-1 der Forschungs-Neutronenquelle Heinz-Maier-Leibnitz (FRM II) entdeckt und charakterisiert. Alfonso Chacon und Dr. Mühlbauer bei Einstellungen am Detektor

Wenzel Schürmann / TUM

In magnetischen Wirbeln ordnen sich die magnetischen Momente kreisförmig an. Diese sogenannten Skyrmionen sind nicht nur für die Grundlagenforschung sehr interessant – aufgrund ihrer Stabilität und geringen Größe könnten sie auch für die Entwicklung zukünftiger Magnetspeicher eine Rolle spielen.

Auch deshalb werden die magnetischen Wirbel aktuell intensiv erforscht. Die Frage, wann und wo sie auftreten, ist von besonderem Interesse. Ein Forscherteam der TU München, der Universität zu Köln und der TU Dresden konnte nun erstmals zeigen, dass magnetische Skyrmionen aufgrund unterschiedlicher Mechanismen mehrfach im gleichen Material auftreten können. In der aktuellen Ausgabe der Fachzeitschrift Nature Physics berichtet es von deren Existenz in dem chiralen Magneten Cu2OSeO3 in der Nähe des absoluten Nullpunkts (-273,15 °C). Dazu muss jedoch ein Magnetfeld in eine bestimmte Raumrichtung angelegt werden.

Kleine Magnetstrukturen für kompakte Magnetspeicher?

„Skyrmionen finden sich normalerweise nur in einem einzelnen Bereich von Parametern, also in einem bestimmten Temperaturbereich oder einem Bereich magnetischer oder elektrischer Feldstärke. So ist das zumindest für alle Materialien, in denen diese bislang beobachtet wurden,“ erläutert Professor Christian Pfleiderer vom Physik-Department der Technischen Universität München, der Leiter des Forschungsprojekts.

„Das bedeutet natürlich eine Einschränkung für die Herstellung und technische Nutzung von Skyrmionen, da sie nur stabil sind, wenn man die exakten physikalischen Parameter, zum Beispiel Druck, Spannung oder Feld, zunächst findet und dann einhält. Jetzt haben wir in ein und demselben Material zwei unterschiedliche Skyrmionphasen entdeckt, die zwei getrennte Parameterbereiche aufweisen. Der neue Mechanismus galt als sehr schwach. Jetzt zeigt sich, dass es wesentlich mehr Möglichkeiten gibt, Skyrmionen zu erzeugen und kontrollieren als wir bisher dachten."

Zweite Skyrmionenphase bei ganz tiefen Temperaturen

Alfonso Chacon entdeckte die neue Phase, als er an der Forschungs-Neutronenquelle der TUM die metastabilen Eigenschaften einer bereits bekannten Skyrmionenphase untersuchte und erklärt: „Dieses metabstabile Verhalten interessiert uns, weil wir daraus die Ursachen und Stärke der Stabilität der magnetischen Wirbel bestimmen können. Dies erlaubt zu verstehen, wie diese erzeugt oder gelöscht werden können. Bei diesen Messungen ist uns die neue Phase dann aufgefallen."

„Bei tiefen Temperaturen spielt die Quantenphysik eine immer größere Rolle“, erläutert Dr. Markus Garst vom Institut für Theoretische Physik der TU Dresden. „Diese beeinflusst auch die physikalischen Eigenschaften der magnetischen Skyrmionen. Unsere Forschungsergebnisse erlauben es uns, Quantenwirbel in Magneten gezielt zu untersuchen.“

„Wir forschen schon seit gut einem Jahrzehnt zu Skyrmionen, am aktuellen Projekt seit etwa anderthalb Jahren, und haben eine tolle und erfolgreiche Zusammenarbeit zwischen den beteiligten Gruppen,“ erklärt Dr. Garst. „Die Münchner Kollegen machten ihre Beobachtungen mit Hilfe von Neutronenstreuung, die es erlaubt, magnetische Strukturen sichtbar zu machen. Wir haben dann in Zusammenarbeit mit Lukas Heinen und Achim Rosch aus Köln die experimentellen Ergebnisse theoretisch erklären können.“ Diese enge Kooperation zwischen Experiment und Theorie machte die wissenschaftliche Entdeckung erst möglich.

Die Entdeckung und Untersuchung dieser magnetischen Phasen gelang an der Kleinwinkelneutronenstreuanlage SANS-1 des Heinz Maier-Leibnitz Zentrums an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München.

Die Forschungsarbeit wurde von der Deutschen Forschungsgemeinschaft im Rahmen der Sonderforschungsbereiche SFB 1143 „Correlated Magnetism: From Frustration To Topology“ und SFB 1238 „Control and Dynamics of Quantum Materials“ sowie des TRR80 „From Electronic Correlations to Functionality“ gefördert. Die Europäische Union förderte das Projekt im Rahmen des ERC-Grants TOPFIT und die TUM Graduate School unterstützte einen Teil der Autoren.

Informationen für Journalisten:
PD Dr. Markus Garst
Institut für Theoretische Physik
Technische Universität Dresden
Tel.: +49 (0) 351 463 32847
E-Mail: markus.garst@tu-dresden.de

Prof. Dr. Christian Pfleiderer
Lehrstuhl für Topologie korrelierter Systeme
Physik-Department
Technische Universität München
Tel.: +49 (0) 89 289-14720
E-Mail: christian.pfleiderer@tum.de

Originalpublikation:

Observation of two independent skyrmion phases in a chiral magnetic material
A. Chacon, L. Heinen, M. Halder, A. Bauer, W. Simeth, S. Mühlbauer, H. Berger, M. Garst, A. Rosch and C. Pfleiderer
Nature Physics (2018)
DOI: 10.1038/s41567-018-0184-y

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics